Chest CT: Automated nodule detection and assessment of change over time - Preliminary experience

被引:174
|
作者
Ko, JP
Betke, M
机构
[1] Boston Univ, Dept Comp Sci, Boston, MA 02215 USA
[2] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
关键词
computed tomography (CT); computer programs; image processing; computers; diagnostic aid; lung; nodule;
D O I
10.1148/radiology.218.1.r01ja39267
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The authors developed a computer system that automatically identifies nodules at chest computed tomography, quantifies their diameter, and assesses for change in size at follow up. The automated nodule detection system identified 318 (86%) of 370 nodules in 16 studies (eight initial and eight follow-up studies) obtained in eight oncology patients with known nodules. Assessment of change in nodule size by the computer matched that by the thoracic radiologist (Spearman rank correlation coefficient, 0.932).
引用
收藏
页码:267 / 273
页数:7
相关论文
共 50 条
  • [31] National Lung Screening Trial: Variability in Nodule Detection Rates in Chest CT Studies
    Pinsky, Paul F.
    Gierada, David S.
    Nath, P. Hrudaya
    Kazerooni, Ella
    Amorosa, Judith
    RADIOLOGY, 2013, 268 (03) : 865 - 873
  • [32] A fully automated method for lung nodule detection from postero-anterior chest radiographs
    Campadelli, Paola
    Casiraghi, Elena
    Artioli, Diana
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (12) : 1588 - 1603
  • [33] FDG-PET/CT in single pulmonary nodule (SPN): a preliminary experience from a multicenter Italian Assessment of Lung Indeterminate Accidental Nodule (ITALIAN) trial
    Evangelista, L.
    Spadafora, M.
    Mansi, L.
    Pace, L.
    Arosio, M.
    Saladini, G.
    Sanfilippo, S.
    Salvatore, M.
    Pepe, G.
    Cusato, G.
    Ferdeghini, M.
    Chiaravalloti, A.
    Giuliano, M.
    Farsad, M.
    Pellegrino, S.
    Del Vecchio, S.
    Giordano, A.
    Cuocolo, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 : S315 - S315
  • [34] Impact of artificial intelligence assistance on pulmonary nodule detection and localization in chest CT: a comparative study among radiologists of varying experience levels
    Peters, Alan Arthur
    Wiescholek, Nina
    Mueller, Martin
    Klaus, Jeremias
    Strodka, Felix
    Macek, Ana
    Primetis, Elias
    Drakopulos, Dionysios
    Huber, Adrian Thomas
    Obmann, Verena Carola
    Ruder, Thomas Daniel
    Roos, Justus Erasmus
    Heverhagen, Johannes Thomas
    Christe, Andreas
    Ebner, Lukas
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Pulmonary nodule detection and volumetrical analysis with Low Dose protocols: Preliminary experience
    Rossi, Pier Luca
    Baldazzi, Giuseppe
    Bernardi, Terenzio
    Pagan, Laura
    Testoni, Giovanni
    Zannoli, Romano
    Gavelli, Giampaolo
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2006, 6 (01) : 19 - 23
  • [36] Automated detection of lung nodules in CT scans: Preliminary results
    Armato, SG
    Giger, ML
    MacMahon, H
    MEDICAL PHYSICS, 2001, 28 (08) : 1552 - 1561
  • [37] CT cholangiography: Preliminary experience in the detection of biliary disease
    Breiman, RS
    Yeh, BM
    Lutz, J
    Knoess, N
    Qayyum, A
    Coakley, FV
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2004, 182 (04) : 62 - 62
  • [38] Single exposure dual energy subtraction computed radiography of the chest for the assessment of nodule detection
    Hartman, TE
    Aughenbaugh, GL
    Harms, GF
    Sykes, AG
    Weaver, AL
    Hodge, D
    RADIOLOGY, 1998, 209P : 410 - 410
  • [39] Automated nodule detection in a large database of low-dose CT screening studies
    Roy, A
    Armato, S
    Doi, K
    Sone, S
    Altman, M
    MEDICAL PHYSICS, 2003, 30 (06) : 1457 - 1457
  • [40] Automated lung nodule detection in helical CT images - False positive reduction strategies
    Gurcan, MN
    Sahiner, B
    Petrick, NA
    Chan, H
    Kazerooni, EA
    Cascade, PN
    RADIOLOGY, 2001, 221 : 546 - 547