Chest CT: Automated nodule detection and assessment of change over time - Preliminary experience

被引:174
|
作者
Ko, JP
Betke, M
机构
[1] Boston Univ, Dept Comp Sci, Boston, MA 02215 USA
[2] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
关键词
computed tomography (CT); computer programs; image processing; computers; diagnostic aid; lung; nodule;
D O I
10.1148/radiology.218.1.r01ja39267
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The authors developed a computer system that automatically identifies nodules at chest computed tomography, quantifies their diameter, and assesses for change in size at follow up. The automated nodule detection system identified 318 (86%) of 370 nodules in 16 studies (eight initial and eight follow-up studies) obtained in eight oncology patients with known nodules. Assessment of change in nodule size by the computer matched that by the thoracic radiologist (Spearman rank correlation coefficient, 0.932).
引用
收藏
页码:267 / 273
页数:7
相关论文
共 50 条
  • [21] The Self-Overlap Method for Assessment of Lung Nodule Morphology in Chest CT
    Joseph N. Stember
    Jane P. Ko
    David P. Naidich
    Manmeen Kaur
    Henry Rusinek
    Journal of Digital Imaging, 2013, 26 : 239 - 247
  • [22] Deep Neural Networks Ensemble for Lung Nodule Detection on Chest CT Scans
    Ardimento, Pasquale
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [23] Lung vessel suppression and its effect on nodule detection in chest CT scans
    Gu, Xiaomeng
    Xie, Weiyang
    Fang, Qiming
    Zha, Jun
    Li, Qiang
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [24] Ultra-Low Dose Chest CT with Denoising for Lung Nodule Detection
    Kerpel, Ariel
    Marom, Edith Michelle
    Green, Michael
    Eifer, Michal
    Konen, Eli
    Mayer, Arnaldo
    Cuellar, Sonia L. Betancourt
    ISRAEL MEDICAL ASSOCIATION JOURNAL, 2021, 23 (09): : 550 - 555
  • [25] Lung Nodule Detection Using Combined Traditional and Deep Models and Chest CT
    Zhang, Junjie
    Huang, Zhaowei
    Huang, Tairan
    Xia, Yong
    Zhang, Yanning
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 655 - 662
  • [26] Wavelet compression of low-dose chest CT: Effect on nodule detection
    Ko, JP
    Ruslnek, H
    Naidich, DP
    McGuinness, G
    Rubinowitz, AN
    Kim, H
    RADIOLOGY, 2001, 221 : 311 - 311
  • [27] A preliminary assessment of change in gait function over time in CMT type 1
    Ounpuu, Sylvia
    Pogemiller, Kelly
    Acsadi, Gyula
    Kristan, Pierz
    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, 2018, 23 (04) : 370 - 370
  • [28] Lung nodule detection on chest CT: Evaluation of a computer-aided detection (CAD) system
    Lee, IJ
    Gamsu, G
    Czum, J
    Wu, N
    Johnson, R
    Chakrapani, S
    KOREAN JOURNAL OF RADIOLOGY, 2005, 6 (02) : 89 - 93
  • [29] Ultra-low-dose MDCT of the chest: Influence on automated lung nodule detection
    Lee, Ji Young
    Chung, Myung Jin
    Yi, Chin A.
    Lee, Kyung Soo
    KOREAN JOURNAL OF RADIOLOGY, 2008, 9 (02) : 95 - 101
  • [30] Pulmonary Nodule Detection in Volumetric Chest CT Scans Using CNNs-Based Nodule-Size-Adaptive Detection and Classification
    Wang, Jun
    Wang, Jiawei
    Wens, Yaofeng
    Lu, Hongbing
    Niu, Tianye
    Pan, Jiangfeng
    Qian, Dahong
    IEEE ACCESS, 2019, 7 : 46033 - 46044