Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdelyi-Kober integral conditions

被引:3
|
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Hemalatha, S. [4 ]
Duraisamy, P. [5 ]
Pandiyan, P. [6 ]
Muthaiah, Subramanian [7 ]
机构
[1] Cankaya Univ, Dept Math, Ankara, Turkey
[2] Inst Space Sci, Magurele, Romania
[3] China Med Univ, Dept Med Res, Taichung, Taiwan
[4] Sasurie Coll Arts & Sci, Dept Math, Vijayamangalam, India
[5] Gobi Arts & Sci Coll, Dept Math, Gobichettipalayam, India
[6] KPR Inst Engn & Technol, Dept Elect & Elect Engn, Coimbatore, Tamil Nadu, India
[7] KPR Inst Engn & Technol, Dept Math, Coimbatore, Tamil Nadu, India
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
关键词
Caputo derivatives; Erdelyi-Kober integrals; Riemann-Liouville integrals; coupled system; existence; fixed point; SYSTEM; STABILITY;
D O I
10.3934/math.2021752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes the existence and uniqueness of a solution for a coupled system that has fractional differential equations through Erdelyi-Kober and Riemann-Liouville fractional integral boundary conditions. The existence of the solution for the coupled system by adopting the Leray-Schauder alternative. The uniqueness of solution for the problem can be found using Banach fixed point theorem. In order to verify the proposed criterion, some numerical examples are also discussed.
引用
收藏
页码:13004 / 13023
页数:20
相关论文
共 50 条