Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdelyi-Kober integral conditions

被引:3
|
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Hemalatha, S. [4 ]
Duraisamy, P. [5 ]
Pandiyan, P. [6 ]
Muthaiah, Subramanian [7 ]
机构
[1] Cankaya Univ, Dept Math, Ankara, Turkey
[2] Inst Space Sci, Magurele, Romania
[3] China Med Univ, Dept Med Res, Taichung, Taiwan
[4] Sasurie Coll Arts & Sci, Dept Math, Vijayamangalam, India
[5] Gobi Arts & Sci Coll, Dept Math, Gobichettipalayam, India
[6] KPR Inst Engn & Technol, Dept Elect & Elect Engn, Coimbatore, Tamil Nadu, India
[7] KPR Inst Engn & Technol, Dept Math, Coimbatore, Tamil Nadu, India
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
关键词
Caputo derivatives; Erdelyi-Kober integrals; Riemann-Liouville integrals; coupled system; existence; fixed point; SYSTEM; STABILITY;
D O I
10.3934/math.2021752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes the existence and uniqueness of a solution for a coupled system that has fractional differential equations through Erdelyi-Kober and Riemann-Liouville fractional integral boundary conditions. The existence of the solution for the coupled system by adopting the Leray-Schauder alternative. The uniqueness of solution for the problem can be found using Banach fixed point theorem. In order to verify the proposed criterion, some numerical examples are also discussed.
引用
收藏
页码:13004 / 13023
页数:20
相关论文
共 50 条
  • [21] Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdélyi-Kober integral boundary conditions on the half-line
    Phollakrit Thiramanus
    Sotiris K Ntouyas
    Jessada Tariboon
    Boundary Value Problems, 2015
  • [22] Existence Results for Nonlinear Coupled Hilfer Fractional Differential Equations with Nonlocal Riemann-Liouville and Hadamard-Type Iterated Integral Boundary Conditions
    Theswan, Sunisa
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    Tariboon, Jessada
    SYMMETRY-BASEL, 2022, 14 (09):
  • [23] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [24] Mixed problems of fractional coupled systems of Riemann-Liouville differential equations and Hadamard integral conditions
    Ntouyas, S. K.
    Tariboon, Jessada
    Thiramanus, Phollakrit
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (05) : 813 - 828
  • [25] EXISTENCE RESULTS FOR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH RIEMANN-LIOUVILLE DERIVATIVE
    Jiaxing Zhou
    Hongwei Yin
    Annals of Differential Equations, 2014, 30 (03) : 373 - 378
  • [26] Existence of solutions for q-fractional differential equations with nonlocal Erdelyi-Kober q-fractional integral condition
    Jiang, Min
    Huang, Rengang
    AIMS MATHEMATICS, 2020, 5 (06): : 6537 - 6551
  • [27] Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 295 - 308
  • [28] Mixed Erdelyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions
    Samadi, Ayub
    Kamthorncharoen, Chaiyod
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AIMS MATHEMATICS, 2024, 9 (11): : 32904 - 32920
  • [29] Existence and Uniqueness Results for Nonlinear Implicit Riemann-Liouville Fractional Differential Equations with Nonlocal Conditions
    Lachouri, Adel
    Ardjouni, Abdelouaheb
    Djoudi, Ahcene
    FILOMAT, 2020, 34 (14) : 4881 - 4891
  • [30] On a Hilfer Fractional Differential EquationWith Nonlocal ErdeLyi-Kober Fractional Integral Boundary Conditions
    Abbas, Mohamed, I
    FILOMAT, 2020, 34 (09) : 3003 - 3014