Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdelyi-Kober integral conditions

被引:3
|
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Hemalatha, S. [4 ]
Duraisamy, P. [5 ]
Pandiyan, P. [6 ]
Muthaiah, Subramanian [7 ]
机构
[1] Cankaya Univ, Dept Math, Ankara, Turkey
[2] Inst Space Sci, Magurele, Romania
[3] China Med Univ, Dept Med Res, Taichung, Taiwan
[4] Sasurie Coll Arts & Sci, Dept Math, Vijayamangalam, India
[5] Gobi Arts & Sci Coll, Dept Math, Gobichettipalayam, India
[6] KPR Inst Engn & Technol, Dept Elect & Elect Engn, Coimbatore, Tamil Nadu, India
[7] KPR Inst Engn & Technol, Dept Math, Coimbatore, Tamil Nadu, India
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
关键词
Caputo derivatives; Erdelyi-Kober integrals; Riemann-Liouville integrals; coupled system; existence; fixed point; SYSTEM; STABILITY;
D O I
10.3934/math.2021752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes the existence and uniqueness of a solution for a coupled system that has fractional differential equations through Erdelyi-Kober and Riemann-Liouville fractional integral boundary conditions. The existence of the solution for the coupled system by adopting the Leray-Schauder alternative. The uniqueness of solution for the problem can be found using Banach fixed point theorem. In order to verify the proposed criterion, some numerical examples are also discussed.
引用
收藏
页码:13004 / 13023
页数:20
相关论文
共 50 条
  • [1] NONLINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL ERDELYI-KOBER FRACTIONAL INTEGRAL CONDITIONS
    Thongsalee, Natthaphong
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 480 - 497
  • [2] Existence results for fractional order differential equation with nonlocal Erdelyi-Kober and generalized Riemann-Liouville type integral boundary conditions at resonance
    Sun, Qiao
    Meng, Shuman
    Cui, Yujun
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [3] Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdelyi-Kober integral boundary conditions on the half-line
    Thiramanus, Phollakrit
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    BOUNDARY VALUE PROBLEMS, 2015,
  • [4] Caputo Type Fractional Differential Equations with Nonlocal Riemann-Liouville and Erdelyi-Kober Type Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Alsaedi, Ahmed
    FILOMAT, 2017, 31 (14) : 4515 - 4529
  • [5] Existence and U-H Stability Results for Nonlinear Coupled Fractional Differential Equations with Boundary Conditions Involving Riemann-Liouville and Erdelyi-Kober Integrals
    Subramanian, Muthaiah
    Duraisamy, P.
    Kamaleshwari, C.
    Unyong, Bundit
    Vadivel, R.
    FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [6] Riemann-Liouville and Caputo type multiple Erdelyi-Kober operators
    Kiryakova, Virginia
    Luchko, Yuri
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1314 - 1336
  • [7] Existence results for fractional differential inclusions with Erdelyi-Kober fractional integral conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2017, 25 (02): : 5 - 24
  • [8] Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann-Liouville and Erdelyi-Kober Q-Fractional Integral Conditions
    Zada, Akbar
    Alam, Mehboob
    Khalid, Khansa Hina
    Iqbal, Ramsha
    Popa, Ioan-Lucian
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [9] A Study of Nonlinear Fractional-Order Boundary Value Problem with Nonlocal Erdelyi-Kober and Generalized Riemann-Liouville Type Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Alsaedi, Ahmed
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (02) : 121 - 139
  • [10] System of fractional differential equations with Erdelyi-Kober fractional integral conditions
    Thongsalee, Natthaphong
    Laoprasittichok, Sorasak
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    OPEN MATHEMATICS, 2015, 13 : 847 - 859