The relaxation-time limit in the compressible Euler-Maxwell equations

被引:5
|
作者
Yang, Jianwei [1 ]
Wang, Shu [2 ]
Zhao, Juan [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
Euler-Maxwell equations; Relaxation time limit; Plasmas; Energy estimate; QUASI-NEUTRAL LIMIT; DRIFT-DIFFUSION EQUATIONS; POISSON SYSTEM; HYDRODYNAMIC MODEL; HYPERBOLIC SYSTEMS; SEMICONDUCTORS; CONVERGENCE;
D O I
10.1016/j.na.2011.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study multidimensional Euler-Maxwell equations for plasmas with short momentum relaxation time. The convergence for the smooth solutions to the compressible Euler-Maxwell equations toward the solutions to the smooth solutions to the drift-diffusion equations is proved by means of the Maxwell iteration, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is justified. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7005 / 7011
页数:7
相关论文
共 50 条
  • [31] From quantum Euler-Maxwell equations to incompressible Euler equations
    Yang, Jianwei
    Ju, Zhiping
    APPLICABLE ANALYSIS, 2015, 94 (11) : 2201 - 2210
  • [32] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    Jiang Song
    Li FuCai
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 61 - 76
  • [33] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    Song Jiang
    FuCai Li
    Science China Mathematics, 2015, 58 : 61 - 76
  • [34] RIGOROUS DERIVATION OF INCOMPRESSIBLE e-MHD EQUATIONS FROM COMPRESSIBLE EULER-MAXWELL EQUATIONS
    Peng, Yue-Jun
    Wang, Shu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 540 - 565
  • [35] Relaxation limit in Besov spaces for compressible Euler equations
    Xu, Jiang
    Wang, Zejun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (01): : 43 - 61
  • [36] ASYMPTOTIC EXPANSIONS IN TWO-FLUID COMPRESSIBLE EULER-MAXWELL EQUATIONS WITH SMALL PARAMETERS
    Peng, Yue-Jun
    Wang, Shu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) : 415 - 433
  • [37] Global solutions of Euler-Maxwell equations with dissipation
    Ducomet, Bernard
    Necasova, Sarka
    Simon, John Sebastian H.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024,
  • [38] Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations
    Yang, Jianwei
    Wang, Hongli
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [39] Numerical approximation of the Euler-Maxwell model in the quasineutral limit
    Degond, P.
    Deluzet, F.
    Savelief, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) : 1917 - 1946
  • [40] The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma
    Yang, Jianwei
    Wang, Shu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1829 - 1840