The relaxation-time limit in the compressible Euler-Maxwell equations

被引:5
|
作者
Yang, Jianwei [1 ]
Wang, Shu [2 ]
Zhao, Juan [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
Euler-Maxwell equations; Relaxation time limit; Plasmas; Energy estimate; QUASI-NEUTRAL LIMIT; DRIFT-DIFFUSION EQUATIONS; POISSON SYSTEM; HYDRODYNAMIC MODEL; HYPERBOLIC SYSTEMS; SEMICONDUCTORS; CONVERGENCE;
D O I
10.1016/j.na.2011.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study multidimensional Euler-Maxwell equations for plasmas with short momentum relaxation time. The convergence for the smooth solutions to the compressible Euler-Maxwell equations toward the solutions to the smooth solutions to the drift-diffusion equations is proved by means of the Maxwell iteration, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is justified. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7005 / 7011
页数:7
相关论文
共 50 条
  • [11] A new characterization of the dissipation structure and the relaxation limit for the compressible Euler-Maxwell system
    Crin-Barat, Timothee
    Peng, Yue-Jun
    Shou, Ling-Yun
    Xu, Jiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (02)
  • [12] Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations
    Yang, Jianwei
    Wang, Shu
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [13] GLOBAL CLASSICAL SOLUTIONS TO THE COMPRESSIBLE EULER-MAXWELL EQUATIONS
    Xu, Jiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) : 2688 - 2718
  • [14] Non-uniqueness for the compressible Euler-Maxwell equations
    Mao, Shunkai
    Qu, Peng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [15] Asymptotic Stability of the Compressible Euler-Maxwell Equations to Euler-Poisson Equations
    Liu, Qingqing
    Yin, Haiyan
    Zhu, Changjiang
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (04) : 1085 - 1108
  • [16] The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas
    Yang, Jianwei
    Wang, Shu
    Li, Yong
    Luo, Dang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) : 343 - 353
  • [17] A Note on the Relaxation-Time Limit of the Isothermal Euler Equations
    Jiang Xu
    Daoyuan Fang
    Boundary Value Problems, 2007
  • [18] A note on the relaxation-time limit of the isothermal Euler equations
    Xu, Jiang
    Fang, Daoyuan
    BOUNDARY VALUE PROBLEMS, 2007, 2007 (1)
  • [19] Asymptotic Stability of Stationary Solutions to the Compressible Euler-Maxwell Equations
    Liu, Qingqing
    Zhu, Changjiang
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (04) : 1203 - 1235
  • [20] Convergence of the Euler-Maxwell two-fluid system to compressible Euler equations
    Yang, Jianwei
    Wang, Shu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (02) : 889 - 903