Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes

被引:235
|
作者
Qi, HL [1 ]
Zhang, CX [1 ]
机构
[1] Shaanxi Normal Univ, Sch Chem & Mat Sci, Xian 710062, Peoples R China
关键词
electrochemistry; multiwall carbon nanotubes; chemically modified electrode; hydroquinone; catechol;
D O I
10.1002/elan.200403150
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A simply and high selectively electrochemical method for simultaneous determination of hydroquinone and catechol has been developed at a glassy carbon electrode modified with multiwall carbon nanotubes (MWNT). It was found that the oxidation peak separation of hydroquinone and catechol and the oxidation currents of hydroquinone and catechol greatly increase at MWNT modified electrode in 0.20 M acetate buffer solution (pH 4.5). The oxidation peaks of hydroquinone and catechol merge into a large peak of 302 mV (vs. Ag/AgCl, 3 M NaCl) at bare glassy carbon electrode. The two corresponding well-defined oxidation peaks of hydroquinone in the presence of catechol at MWNT modified electrode occur at 264 mV and 162 mV, respectively. Under the optimized condition, the oxidation peak current of hydroquinone is linear over a range from 1.0 x 10(-6) M to 1.0 x 10(-4) M hydroquinone in the presence of 1.0 x 10(-4) M catechol with the detection limit of 7.5 x 10(-7) M and the oxidation peak current of catechol is linear over a range from 6.0 x 10(-7) M to 1.0 x 10(-4) M catechol in the presence of 1.0 x 10(-4) M hydroquinone with the detection limit of 2.0 x 10(-7) M. The proposed method has been applied to simultaneous determination of hydroquinone and catechol in a water sample with simplicity and high selectivity.
引用
收藏
页码:832 / 838
页数:7
相关论文
共 50 条
  • [21] Voltammetric determination of catechol and hydroquinone at poly (murexide) modified glassy carbon electrode
    Kumar, A. Anil
    Swamy, B. E. Kumara
    Rani, T. Shobha
    Ganesh, P. S.
    Raj, Y. Paul
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 98 : 746 - 752
  • [22] Simultaneous Determination of Hydroquinone, Catechol and Resorcinol Based on Graphene/Cobalt Hexacyanoferrate Modified Glassy Carbon Electrode
    Huang Kejing
    Yu Sheng
    Wang Lan
    Gan Tian
    Li Mei
    ACTA CHIMICA SINICA, 2012, 70 (06) : 735 - 740
  • [23] Direct simultaneous electrochemical determination of hydroquinone and catechol at a poly(glutamic acid) modified glassy carbon electrode
    Wang, Liang
    Huang, Pengfei
    Bai, Junyue
    Wang, Hongjing
    Zhang, Liying
    Zhao, Yuqing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2007, 2 (01): : 123 - 132
  • [24] Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite
    Xuemei Ma
    Zhaona Liu
    Cuicui Qiu
    Ting Chen
    Houyi Ma
    Microchimica Acta, 2013, 180 : 461 - 468
  • [25] Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode
    Wei, Chan
    Huang, Qitong
    Hu, Shirong
    Zhang, Hanqiang
    Zhang, Wuxiang
    Wang, Zhaoming
    Zhu, Menglin
    Dai, Pingwang
    Huang, Lizhang
    ELECTROCHIMICA ACTA, 2014, 149 : 237 - 244
  • [26] Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite
    Ma, Xuemei
    Liu, Zhaona
    Qiu, Cuicui
    Chen, Ting
    Ma, Houyi
    MICROCHIMICA ACTA, 2013, 180 (5-6) : 461 - 468
  • [27] Voltammetric determination of catechol and hydroquinone at poly (niacinamide) modified glassy carbon electrode
    Kumar, A. Anil
    Swamy, B. E. Kumara
    Ganesh, P. S.
    Rani, T. Shobha
    Reddy, G. Venkata
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 799 : 505 - 511
  • [28] Electrochemical determination of Tannins using multiwall carbon nanotubes modified glassy carbon electrode
    Lü, SF
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2004, 40 (07) : 750 - 754
  • [29] Electrochemical Determination of Tannins Using Multiwall Carbon Nanotubes Modified Glassy Carbon Electrode
    Shaofang Lü
    Russian Journal of Electrochemistry, 2004, 40 : 750 - 754
  • [30] Determination of Catechol and Hydroquinone by Using Perilla frutescens Activated Carbon Modified Glassy Carbon Electrode
    Zheng, Meiqin
    Zhu, Jingjing
    Fan, Rongrong
    Wang, Yujie
    Lv, Zhaojun
    Han, Yongming
    Peng, Jun
    Zheng, Xinyu
    Lin, Ruiyu
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2020, 31 (01) : 25 - 32