The perturbative invariants of rational homology 3-spheres can be recovered from the LMO invariant
被引:3
|
作者:
Kuriya, Takahito
论文数: 0引用数: 0
h-index: 0
机构:
Osaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 5588585, Japan
Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, JapanOsaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 5588585, Japan
Kuriya, Takahito
[1
,2
]
Le, Thang T. Q.
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Tech, Sch Math, Atlanta, GA 30332 USAOsaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 5588585, Japan
Le, Thang T. Q.
[3
]
Ohtsuki, Tomotada
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, JapanOsaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 5588585, Japan
Ohtsuki, Tomotada
[2
]
机构:
[1] Osaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 5588585, Japan
[2] Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
We show that the perturbative g invariant of rational homology 3-spheres can be recovered from the Le-Murakami-Ohtsuki (LMO) invariant for any simple Lie algebra g, that is, the LMO invariant is universal among the perturbative invariants. This universality was conjectured in Le, Murakami and Ohtsuki ['On a universal perturbative invariant of 3-manifolds', Topology 37 (1998) 539-574]. Since the perturbative invariants dominate the quantum invariants of integral homology 3-spheres [K. Habiro, 'On the quantum sl(2) invariants of knots and integral homology spheres', Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs 4 (Geometry and Topology Publications, Coventry, 2002) 161-181; K. Habiro, 'A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres', 171 (2008) 1-81; K. Habiro and T. T. Q. Le, in preparation] the LMO invariant dominates the quantum invariants of integral homology 3-spheres.