The perturbative invariants of rational homology 3-spheres can be recovered from the LMO invariant

被引:3
|
作者
Kuriya, Takahito [1 ,2 ]
Le, Thang T. Q. [3 ]
Ohtsuki, Tomotada [2 ]
机构
[1] Osaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 5588585, Japan
[2] Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
[3] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
FINITE-TYPE INVARIANTS; 3-MANIFOLDS; INTEGRALITY;
D O I
10.1112/jtopol/jts010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the perturbative g invariant of rational homology 3-spheres can be recovered from the Le-Murakami-Ohtsuki (LMO) invariant for any simple Lie algebra g, that is, the LMO invariant is universal among the perturbative invariants. This universality was conjectured in Le, Murakami and Ohtsuki ['On a universal perturbative invariant of 3-manifolds', Topology 37 (1998) 539-574]. Since the perturbative invariants dominate the quantum invariants of integral homology 3-spheres [K. Habiro, 'On the quantum sl(2) invariants of knots and integral homology spheres', Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs 4 (Geometry and Topology Publications, Coventry, 2002) 161-181; K. Habiro, 'A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres', 171 (2008) 1-81; K. Habiro and T. T. Q. Le, in preparation] the LMO invariant dominates the quantum invariants of integral homology 3-spheres.
引用
收藏
页码:458 / 484
页数:27
相关论文
共 50 条