Solving p-adic polynomial systems via iterative eigenvector algorithms

被引:5
|
作者
Kulkarni, Avinash [1 ]
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 04期
关键词
p-adic linear algebra; solving polynomial systems; eigenvector algorithms;
D O I
10.1080/03081087.2020.1743633
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an implementation of a polynomial system solver to compute the approximate solutions of a 0-dimensional polynomial system with finite precision p-adic arithmetic. We also describe an improvement to an algorithm of Caruso, Roe, and Vaccon for calculating the eigenvalues and eigenvectors of a p-adic matrix.
引用
收藏
页码:650 / 671
页数:22
相关论文
共 50 条
  • [11] P-ADIC ALGORITHMS AND THE COMPUTATION OF ZEROS OF P-ADIC L-FUNCTIONS
    LAMPRECHT, K
    ZIMMER, HG
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 204 : 491 - 502
  • [12] Relaxed algorithms for p-adic numbers
    Berthomieu, Jeremy
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (03): : 541 - 577
  • [13] On the compactness of Julia sets of p-adic polynomial
    Bézivin, JP
    MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (1-2) : 273 - 289
  • [14] MINIMAL POLYNOMIAL DYNAMICS ON THE p-ADIC INTEGERS
    Jeong, Sangtae
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (01) : 1 - 32
  • [15] Where are the zeroes of a random p-adic polynomial
    Caruso, Xavier
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [16] p-adic dynamic systems
    Albeverio, S
    Khrennikov, A
    Tirozzi, B
    De Smedt, S
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 114 (03) : 276 - 287
  • [17] p-adic dynamic systems
    S. Albeverio
    A. Khrennikov
    B. Tirozzi
    S. De Smedt
    Theoretical and Mathematical Physics, 1998, 114 : 276 - 287
  • [18] Attracting fixed points of polynomial dynamical systems in fields of p-adic numbers
    Khrennikov, A. Yu.
    Svensson, P.-A.
    IZVESTIYA MATHEMATICS, 2007, 71 (04) : 753 - 764
  • [19] The asymptotic number of periodic points of discrete polynomial p-adic dynamical systems
    Khrennikov, A
    Nilsson, M
    Nyqvist, R
    ULTRAMETRIC FUNCTIONAL ANALYSIS, 2003, 319 : 159 - 166
  • [20] A Complexity Chasm for Solving Sparse Polynomial Equations Over p-adic Fields (Extended Abstract)
    Rojas, J. Maurice
    Zhu, Yuyu
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2020, 54 (03): : 86 - 90