p-adic dynamic systems

被引:36
|
作者
Albeverio, S [1 ]
Khrennikov, A
Tirozzi, B
De Smedt, S
机构
[1] Ruhr Univ Bochum, Inst Math, D-44780 Bochum, Germany
[2] Essen Bochum Dusseldorf, Dusseldorf, Germany
[3] BiBoS Res Ctr, D-33615 Bielefeld, Germany
[4] CERFIM, Locarno, Switzerland
[5] Univ Vaxjo, Dept Math, S-35195 Vaxjo, Sweden
[6] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[7] Free Univ Brussels, Fac Toegepaste Wetenschappen, B-1050 Brussels, Belgium
关键词
Prime Number; Periodic Point; Siegel Disk; Cyclic Attractor; Invariant Sphere;
D O I
10.1007/BF02575441
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamic systems in non-Archimedean number fields (i.e., fields with non-Archimedean valuations) are studied. Results are obtained for the fields of p-adic numbers and complex p-adic numbers. Simple p-adic dynamic systems have a very rich structure-attractors, Siegel disks, cycles, and a new structure called a "fuzzy cycle." The prime number p plays the role of a parameter of the p-adic dynamic system. Changing p radically changes the behavior of the system: attractors may become the centers of Siegel disks, and vice versa, and cycles of different lengths may appear or disappear.
引用
收藏
页码:276 / 287
页数:12
相关论文
共 50 条