ProbExplorer: Uncertainty-guided Exploration and Editing of Probabilistic Medical Image Segmentation

被引:19
|
作者
Saad, Ahmed [1 ,2 ]
Moeller, Torsten [1 ]
Hamarneh, Ghassan [2 ]
机构
[1] Simon Fraser Univ, Graph Usabil & Visualizat GrUVi Lab, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, MIAL, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INTERACTIVE SEGMENTATION; VISUALIZATION;
D O I
10.1111/j.1467-8659.2009.01691.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we develop an interactive analysis and visualization tool for probabilistic segmentation results in medical imaging. We provide a systematic approach to analyze, interact and highlight regions of segmentation uncertainty. We introduce a set of visual analysis widgets integrating different approaches to analyze multivariate probabilistic field data with direct volume rendering. We demonstrate the user's ability to identify suspicious regions (e.g. tumors) and correct the misclassification results using a novel uncertainty-based segmentation editing technique. We evaluate our system and demonstrate its usefulness in the context of static and time-varying medical imaging datasets.
引用
收藏
页码:1113 / 1122
页数:10
相关论文
共 50 条
  • [41] Uncertainty Quantification in Medical Image Segmentation with Normalizing Flows
    Selvan, Raghavendra
    Faye, Frederik
    Middleton, Jon
    Pai, Akshay
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020, 2020, 12436 : 80 - 90
  • [42] Tripled-Uncertainty Guided Mean Teacher Model for Semi-supervised Medical Image Segmentation
    Wang, Kaiping
    Zhan, Bo
    Zu, Chen
    Wu, Xi
    Zhou, Jiliu
    Zhou, Luping
    Wang, Yan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 450 - 460
  • [43] Asymmetric Contour Uncertainty Estimation for Medical Image Segmentation
    Judge, Thierry
    Bernard, Olivier
    Kim, Woo-Jin Cho
    Gomez, Alberto
    Chartsias, Agisilaos
    Jodoin, Pierre-Marc
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 210 - 220
  • [44] Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation
    Zhao, Zi-an
    Feng, Xiu-fang
    Ren, Xiao-qiang
    Dong, Yun-yun
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (24):
  • [45] CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation
    Judge, Thierry
    Bernard, Olivier
    Porumb, Mihaela
    Chartsias, Agisilaos
    Beqiri, Arian
    Jodoin, Pierre-Marc
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 492 - 502
  • [46] Uncertainty-Guided Semi-Supervised (UGSS) mean teacher framework for brain hemorrhage segmentation and volume quantification
    Emon, Solayman Hossain
    Tseng, Tzu-Liang
    Pokojovy, Michael
    Moen, Scott
    Mccaffrey, Peter
    Walser, Eric
    Vo, Alexander
    Rahman, Md Fashiar
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [47] FNPC-SAM: Uncertainty-Guided False Negative/Positive Control for SAM on Noisy Medical Images
    Yao, Xing
    Liu, Han
    Hu, Dewei
    Lu, Daiwei
    Lou, Ange
    Li, Hao
    Deng, Ruining
    Arenas, Gabriel
    Oguz, Baris
    Schwartz, Nadav
    Byram, Brett C.
    Oguz, Ipek
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [48] Uncertainty-guided multitask semi-supervised network for the multi-organ segmentation of breast cancer CBCT
    Wang, Zi-Yi
    Sun, Wei
    Zhang, Heng
    Cao, Nan-Nan
    Ding, Jiang-Yi
    Sun, Jia-Wei
    Xie, Kai
    Gao, Liu-Gang
    Ni, Xin-Ye
    MEDICAL PHYSICS, 2025,
  • [49] Medical matting: Medical image segmentation with uncertainty from the matting perspective
    Wang, Lin
    Ye, Xiufen
    Ju, Lie
    He, Wanji
    Zhang, Donghao
    Wang, Xin
    Huang, Yelin
    Feng, Wei
    Song, Kaimin
    Ge, Zongyuan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [50] Query-guided generalizable medical image segmentation
    Yang, Zhiyi
    Zhao, Zhou
    Gu, Yuliang
    Xu, Yongchao
    PATTERN RECOGNITION LETTERS, 2024, 184 : 52 - 58