ProbExplorer: Uncertainty-guided Exploration and Editing of Probabilistic Medical Image Segmentation

被引:19
|
作者
Saad, Ahmed [1 ,2 ]
Moeller, Torsten [1 ]
Hamarneh, Ghassan [2 ]
机构
[1] Simon Fraser Univ, Graph Usabil & Visualizat GrUVi Lab, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, MIAL, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INTERACTIVE SEGMENTATION; VISUALIZATION;
D O I
10.1111/j.1467-8659.2009.01691.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we develop an interactive analysis and visualization tool for probabilistic segmentation results in medical imaging. We provide a systematic approach to analyze, interact and highlight regions of segmentation uncertainty. We introduce a set of visual analysis widgets integrating different approaches to analyze multivariate probabilistic field data with direct volume rendering. We demonstrate the user's ability to identify suspicious regions (e.g. tumors) and correct the misclassification results using a novel uncertainty-based segmentation editing technique. We evaluate our system and demonstrate its usefulness in the context of static and time-varying medical imaging datasets.
引用
收藏
页码:1113 / 1122
页数:10
相关论文
共 50 条
  • [31] Lost in Tracking: Uncertainty-Guided Cardiac Cine MRI Segmentation at Right Ventricle Base
    Zhao, Yidong
    Zhang, Yi
    Simonetti, Orlando
    Han, Yuchi
    Tao, Qian
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IX, 2024, 15009 : 415 - 424
  • [32] UTFNet: Uncertainty-Guided Trustworthy Fusion Network for RGB-Thermal Semantic Segmentation
    Wang, Qingwang
    Yin, Cheng
    Song, Haochen
    Shen, Tao
    Gu, Yanfeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [33] Interactive Deep Editing Framework for Medical Image Segmentation
    Zhou, Bowei
    Chen, Li
    Wang, Zhao
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 329 - 337
  • [34] PHiSeg: Capturing Uncertainty in Medical Image Segmentation
    Baumgartner, Christian F.
    Tezcan, Kerem C.
    Chaitanya, Krishna
    Hotker, Andreas M.
    Muehlematter, Urs J.
    Schawkat, Khoschy
    Becker, Anton S.
    Donati, Olivio
    Konukoglu, Ender
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 119 - 127
  • [35] Uncertainty-guided U-Net for soil boundary segmentation using Monte Carlo dropout
    Zhou, X.
    Sheil, B.
    Suryasentana, S.
    Shi, P.
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024,
  • [36] UGEE-Net: Uncertainty-guided and edge-enhanced network for image splicing localization
    Hao, Qixian
    Ren, Ruyong
    Niu, Shaozhang
    Wang, Kai
    Wang, Maosen
    Zhang, Jiwei
    NEURAL NETWORKS, 2024, 178
  • [37] Uncertainty-Guided Self-learning Framework for Semi-supervised Multi-organ Segmentation
    Alves, Natalia
    de Wilde, Bram
    FAST AND LOW-RESOURCE SEMI-SUPERVISED ABDOMINAL ORGAN SEGMENTATION, FLARE 2022, 2022, 13816 : 116 - 127
  • [38] MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model
    Wu, Junde
    Fu, Rao
    Fang, Huihui
    Zhang, Yu
    Yang, Yehui
    Xiong, Haoyi
    Liu, Huiying
    Xu, Yanwu
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1623 - 1639
  • [39] Image Editing via Segmentation Guided Self-Attention Network
    Zhang, Jianfu
    Yang, Peiming
    Wang, Wentao
    Hong, Yan
    Zhang, Liqing
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1605 - 1609
  • [40] Exploration of Different Attention Mechanisms on Medical Image Segmentation
    Tian, Jie
    Wu, Kaijie
    Ma, Kai
    Cheng, Hao
    Gu, Chaocheng
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 : 598 - 606