Simulation of Intermetallic Solidification Using Phase-Field Techniques

被引:0
|
作者
Mullis, A. M. [1 ]
Bollada, P. C. [1 ]
Jimack, P. K. [2 ]
机构
[1] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Intermetallic compounds; Solute trapping; Faceted crystals; Thermodynamics; CAHN-HILLIARD MODEL; RAPID SOLIDIFICATION; GROWTH; INTERFACES;
D O I
10.1007/s12666-018-1428-3
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
We have presented current ideas towards developing a phase-field model appropriate to the solidification of intermetallic phases. Such simulation presents two main challenges (1) dealing with faceted interfaces and (2) the complex sublattice models used to describe the thermodynamics of such phases. Although models already exist for the simulation of faceted crystals, some of these can be shown to produce highly unrealistic Wulff shapes. The model present here uses a parameterisation of the Wulff shape as a direct input to the model, allowing the simulation of arbitrary crystal shapes. In addition, an anti-trapping current that can be used with arbitrary (including sublattice) thermodynamics is presented. Such anti-trapping currents are vital in the simulation of intermetallic phases where the steep liquidus slope means small deviations in solute partitioning behaviour leading to a significant change in tip undercooling.
引用
收藏
页码:2617 / 2622
页数:6
相关论文
共 50 条
  • [41] Phase-field simulation of weld solidification microstructure in an Al-Cu alloy
    Farzadi, A.
    Do-Quang, M.
    Serajzadeh, S.
    Kokabi, A. H.
    Amberg, G.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (06)
  • [42] Phase-field simulation of tilted growth of dendritic arrays during directional solidification
    Xing, H.
    Dong, X. L.
    Chen, C. L.
    Wang, J. Y.
    Du, L. F.
    Jin, K. X.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 90 : 911 - 921
  • [43] Numerical Simulation of Solute Trapping Phenomena Using Phase-Field Solidification Model for Dilute Binary Alloys
    Furtado, Henrique Silva
    Bernardes, Americo Tristao
    Machado, Romuel Figueiredo
    Silva, Carlos Antonio
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2009, 12 (03): : 345 - 351
  • [44] Phase-field simulation during directional solidification of a binary alloy using adaptive finite element method
    Takaki, T
    Fukuoka, T
    Tomita, Y
    JOURNAL OF CRYSTAL GROWTH, 2005, 283 (1-2) : 263 - 278
  • [45] Phase-field modeling of multi-phase solidification
    Nestler, B
    Wheeler, AA
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (1-2) : 230 - 233
  • [46] Simulation of ferroelastic phase formation using phase-field model
    Muramatsu, M.
    Yashiro, K.
    Kawada, T.
    Terada, K.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 146 : 462 - 474
  • [47] RECENT DEVELOPMENTS IN PHASE-FIELD MODELS OF SOLIDIFICATION
    WHEELER, AA
    AHMAD, NA
    BOETTINGER, WJ
    BRAUN, RJ
    MCFADDEN, GB
    MURRAY, BT
    MICROGRAVITY SCIENCES: RESULTS AND ANALYSIS OF RECENT SPACEFLIGHTS, 1995, 16 (07): : 163 - 172
  • [48] MORPHOLOGICAL INSTABILITY IN PHASE-FIELD MODELS OF SOLIDIFICATION
    BRAUN, RJ
    MCFADDEN, GB
    CORIELL, SR
    PHYSICAL REVIEW E, 1994, 49 (05): : 4336 - 4352
  • [49] Phase-field model for multicomponent alloy solidification
    Cha, PR
    Yeon, DH
    Yoon, JK
    JOURNAL OF CRYSTAL GROWTH, 2005, 274 (1-2) : 281 - 293
  • [50] Phase-field model for solidification of a eutectic alloy
    Wheeler, A.A.
    McFadden, G.B.
    Boettinger, W.J.
    1996, (452):