Simulation of Intermetallic Solidification Using Phase-Field Techniques

被引:0
|
作者
Mullis, A. M. [1 ]
Bollada, P. C. [1 ]
Jimack, P. K. [2 ]
机构
[1] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Intermetallic compounds; Solute trapping; Faceted crystals; Thermodynamics; CAHN-HILLIARD MODEL; RAPID SOLIDIFICATION; GROWTH; INTERFACES;
D O I
10.1007/s12666-018-1428-3
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
We have presented current ideas towards developing a phase-field model appropriate to the solidification of intermetallic phases. Such simulation presents two main challenges (1) dealing with faceted interfaces and (2) the complex sublattice models used to describe the thermodynamics of such phases. Although models already exist for the simulation of faceted crystals, some of these can be shown to produce highly unrealistic Wulff shapes. The model present here uses a parameterisation of the Wulff shape as a direct input to the model, allowing the simulation of arbitrary crystal shapes. In addition, an anti-trapping current that can be used with arbitrary (including sublattice) thermodynamics is presented. Such anti-trapping currents are vital in the simulation of intermetallic phases where the steep liquidus slope means small deviations in solute partitioning behaviour leading to a significant change in tip undercooling.
引用
收藏
页码:2617 / 2622
页数:6
相关论文
共 50 条
  • [31] Simulation of the γ-α-transformation using the phase-field method
    Pariser, G
    Schaffnit, P
    Steinbach, I
    Bleck, W
    STEEL RESEARCH, 2001, 72 (09): : 354 - 360
  • [32] Phase-field simulation of solidification and solid-state transformations in multicomponent steels
    Boettger, Bernd
    Apel, Markus
    Eiken, Janin
    Schaffnit, Philippe
    Steinbach, Ingo
    STEEL RESEARCH INTERNATIONAL, 2008, 79 (08) : 608 - 616
  • [33] GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy
    Yamanaka, Akinori
    Aoki, Takayuki
    Ogawa, Satoi
    Takaki, Tomohiro
    JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) : 40 - 45
  • [34] Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys
    Li Feng
    Nini Lu
    Yalong Gao
    Changsheng Zhu
    Junhe Zhong
    Rongzhen Xiao
    China Foundry, 2019, 16 (02) : 97 - 104
  • [35] Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys
    Li Feng
    Ni-ni Lu
    Ya-long Gao
    Chang-sheng Zhu
    Jun-he Zhong
    Rong-zhen Xiao
    China Foundry, 2019, 16 : 97 - 104
  • [36] Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys
    Li Feng
    Ni-ni Lu
    Ya-long Gao
    Chang-sheng Zhu
    Jun-he Zhong
    Rong-zhen Xiao
    China Foundry, 2019, (02) : 97 - 104
  • [37] An adaptive mesh method for phase-field simulation of alloy solidification in three dimensions
    Bollada, P. C.
    Jimack, P. K.
    Mullis, A. M.
    MCWASP XIV: INTERNATIONAL CONFERENCE ON MODELLING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES, 2015, 84
  • [38] An Analysis of the Physical Properties of Multicomponent Alloys on the Simulation of Solidification by Phase-Field Model
    Salvino, I. M.
    Jacome, P. A. D.
    Ferreira, A. F.
    Ferreira, I. L.
    ADVANCED MATERIALS FORUM VI, PTS 1 AND 2, 2013, 730-732 : 703 - 708
  • [39] Phase-field Simulation of Interface Effect during Grain Nucleation of Solidification Processing
    Wang Yongbiao
    Wang Yongxin
    Chen Zheng
    Zhao Yan
    Liu Xiaofeng
    Tang Hongkui
    RARE METAL MATERIALS AND ENGINEERING, 2012, 41 (06) : 1045 - 1048
  • [40] Using the interface Peclet number to select the maximum simulation interface width in phase-field solidification modelling
    Xie, Y.
    Dong, H. B.
    Dantzig, J. A.
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 70 : 71 - 76