Simulation of Intermetallic Solidification Using Phase-Field Techniques

被引:0
|
作者
Mullis, A. M. [1 ]
Bollada, P. C. [1 ]
Jimack, P. K. [2 ]
机构
[1] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Intermetallic compounds; Solute trapping; Faceted crystals; Thermodynamics; CAHN-HILLIARD MODEL; RAPID SOLIDIFICATION; GROWTH; INTERFACES;
D O I
10.1007/s12666-018-1428-3
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
We have presented current ideas towards developing a phase-field model appropriate to the solidification of intermetallic phases. Such simulation presents two main challenges (1) dealing with faceted interfaces and (2) the complex sublattice models used to describe the thermodynamics of such phases. Although models already exist for the simulation of faceted crystals, some of these can be shown to produce highly unrealistic Wulff shapes. The model present here uses a parameterisation of the Wulff shape as a direct input to the model, allowing the simulation of arbitrary crystal shapes. In addition, an anti-trapping current that can be used with arbitrary (including sublattice) thermodynamics is presented. Such anti-trapping currents are vital in the simulation of intermetallic phases where the steep liquidus slope means small deviations in solute partitioning behaviour leading to a significant change in tip undercooling.
引用
收藏
页码:2617 / 2622
页数:6
相关论文
共 50 条
  • [1] Simulation of Intermetallic Solidification Using Phase-Field Techniques
    A. M. Mullis
    P. C. Bollada
    P. K. Jimack
    Transactions of the Indian Institute of Metals, 2018, 71 : 2617 - 2622
  • [2] Phase-field simulation of solidification
    Boettinger, WJ
    Warren, JA
    Beckermann, C
    Karma, A
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 : 163 - 194
  • [3] Progress in numerical simulation of solidification microstructure using phase-field method
    Yu, Yanmei
    Lu, Yili
    Zhang, Zhenzhong
    Yang, Gencang
    Karma, A.
    Beckermann, C.
    Zhuzao/Foundry, 2000, 49 (09): : 507 - 511
  • [4] An introduction to the phase-field method: Simulation of alloy solidification
    Boettinger, WJ
    Warren, JA
    PROCEEDINGS OF THE MERTON C FLEMINGS SYMPOSIUM ON SOLIDIFICATION AND MATERIALS PROCESSING, 2001, : 101 - 112
  • [5] A phase-field simulation of the solidification process under compression
    Ren, Jian-kun
    Chen, Yun
    Cao, Yan-fei
    Xu, Bin
    Sun, Ming-yue
    Li, Dian-zhong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 13 : 2210 - 2219
  • [6] Phase-field simulation of binary alloy during directional solidification
    Wang Zhiping
    Xiao Rongzhen
    Zhu Changsheng
    Xu Jianlin
    Wang Yanlu
    RARE METAL MATERIALS AND ENGINEERING, 2006, 35 : 369 - 373
  • [7] A parallel finite volume procedure for phase-field simulation of solidification
    Ding, Peng
    Liu, Zhe
    Zhang, RuiJie
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2019, 76 (10) : 779 - 798
  • [8] Study progress in phase-field simulation of directional solidification microstructure
    Zhu, Chang-Sheng
    Xiao, Rong-Zhen
    Wang, Zhi-Ping
    Xu, Jian-Lin
    Wang, Yan-Lu
    Zhuzao/Foundry, 2006, 55 (01): : 43 - 46
  • [9] Trapping of Impurity in a Dilute Solution: Phase-Field Simulation of Solidification
    Novokreshchenova, A. A.
    Lebedev, V. G.
    Galenko, P. K.
    TECHNICAL PHYSICS, 2021, 66 (06) : 768 - 778
  • [10] Trapping of Impurity in a Dilute Solution: Phase-Field Simulation of Solidification
    A. A. Novokreshchenova
    V. G. Lebedev
    P. K. Galenko
    Technical Physics, 2021, 66 : 768 - 778