Design of high linearity InGaAs/InP avalanche photodiode with a hybrid absorption layer structure

被引:10
|
作者
Xing, Hailong [1 ]
Zhang, Junqin [1 ]
Liu, Aofei [1 ]
Yang, Yintang [1 ]
机构
[1] Xidian Univ, Sch Microelect, Key Lab, Minist Educ Wide Band Gap Semicond Mat & Devices, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Avalanche diode; InGaAs/InP; Linearity; Hybrid absorption layer; Numerical simulation; DARK-CURRENT; RELIABILITY;
D O I
10.1016/j.infrared.2019.103018
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Based on InGaAs/InP materials, a high linearity avalanche diode with a hybrid absorber layer was designed. The hybrid absorption layer is composed of intrinsic and neutral absorption layers. We analyzed the effect of the thickness ratio of different absorber layers, the doping concentration of the charge layer and the neutral absorber layer on the linearity of APD. The analysis and simulation results show that the hybrid absorption layer APD designed in this paper uses the depletion absorption layer and the neutral absorption layer with a thickness ratio of 0.5. The charge layer and the neutral absorption layer with doping concentrations of 9 x 10(16)/cm(3) and 6 x 10(17)/cm(3), respectively, effectively increase the linearity of the device while maintaining high responsivity. Under this structure, the linearity of the device is greater than - 5.3 dBm with a gain of 11 and the responsivity is about 0.84 A/W at a gain of unity, which is about 50% higher than the normal SAGCM APD of the same responsivity.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Avalanche Photodiode Array Based on InGaAs/InAlAs/InP Heteroepitaxial Structures with Separated Absorption and Multiplication Regions
    Yakovleva, N. I.
    Boltar', K. O.
    Irodova, N. A.
    Klimanov, E. A.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2020, 65 (03) : 347 - 351
  • [32] Design of Triple-mesa InGaAs/InP Avalanche Photodiode with Low Edge Electric Field
    Zhu Shuai-yu
    Xe Sheng
    Chen Yu
    ACTA PHOTONICA SINICA, 2018, 47 (04)
  • [33] Avalanche Photodiode Array Based on InGaAs/InAlAs/InP Heteroepitaxial Structures with Separated Absorption and Multiplication Regions
    N. I. Yakovleva
    K. O. Boltar’
    N. A. Irodova
    E. A. Klimanov
    Journal of Communications Technology and Electronics, 2020, 65 : 347 - 351
  • [34] Formation of guard ring of avalanche photodiode based on the InGaAs/InP heterostructure
    Budtolaev, A. K.
    Grishina, T. N.
    Khakuashev, P. E.
    Chinareva, I. V.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2017, 62 (09) : 1078 - 1082
  • [35] Material Defects and Dark Currents in InGaAs/InP Avalanche Photodiode Devices
    Guo, Zilu
    Wang, Wenjuan
    Li, Yangjun
    Qu, Huidan
    Fan, Liuyan
    Chen, Xiren
    Zhu, Yicheng
    Gu, Yue
    Wang, Yajie
    Zheng, Changlin
    Chen, Pingping
    Lu, Wei
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (09) : 4944 - 4949
  • [36] Theroretical Modelling of Zinc Diffusion for InGaAs/InP Planar Avalanche Photodiode
    Nie, Biying
    Tong, Zhonghua
    Xie, Zongheng
    Shan, Jie
    Chen, Xi
    Xie, Shiyu
    Fang, Ruiyu
    Xu, Dong
    2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 1496 - 1499
  • [37] Formation of guard ring of avalanche photodiode based on the InGaAs/InP heterostructure
    A. K. Budtolaev
    T. N. Grishina
    P. E. Khakuashev
    I. V. Chinareva
    Journal of Communications Technology and Electronics, 2017, 62 : 1078 - 1082
  • [38] Avalanche photodiode with sectional InGaAsP/InP charge layer
    Hasko, D
    Kovác, J
    Uherek, F
    Skriniarová, J
    Jakabovic, J
    Peternai, L
    MICROELECTRONICS JOURNAL, 2006, 37 (06) : 483 - 486
  • [39] Origin of large dark current increase in InGaAs/InP avalanche photodiode
    Wen, J.
    Wang, W. J.
    Chen, X. R.
    Li, N.
    Chen, X. S.
    Lu, W.
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (16)
  • [40] MULTIPLICATION-DEPENDENT FREQUENCY RESPONSES OF INP/INGAAS AVALANCHE PHOTODIODE
    YASUDA, K
    MIKAWA, T
    KISHI, Y
    KANEDA, T
    ELECTRONICS LETTERS, 1984, 20 (09) : 372 - 374