Experimental investigation on heat transfer and flow patterns of pulsating heat pipe assisted by ultrasonic cavitation

被引:25
|
作者
Zhang, Dongwei [1 ,3 ]
Guan, Jian [1 ]
He, Zhuantao [1 ]
Shen, Chao [2 ]
Cao, Hailiang [1 ]
机构
[1] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Civil Engn, Zhengzhou 450001, Henan, Peoples R China
[3] Jiangsu Key Lab Green Proc Equipment, Changzhou 213164, Jiangsu, Peoples R China
关键词
Pulsating heat pipe; Ultrasonic cavitation; Nanofluid; Heat transfer performance; CONVECTION;
D O I
10.1016/j.ijheatmasstransfer.2021.122187
中图分类号
O414.1 [热力学];
学科分类号
摘要
As an active enhanced method, ultrasonic cavitation could evidently improve the heat transfer efficiency of the Pulsating Heat Pipe (PHP). In this work, the influences of ultrasonic and nanofluid on the heat transfer performance of PHP were conducted and analyzed. First, the full visualization experiment was conducted with a high-speed camera to obtain the more detailed flow patterns of PHP. Then, the relative position and instantaneous velocity of vapor bubble was captured to describe the change of flow pattern and the movement of working fluid. Finally, the effects of SiO2-H2O nanofluid with different concentrations (0.5 wt%, 1.0 wt%, 1.5 wt% and 2 wt%) with or without ultrasonic were experimentally investigated. The results reveal that the instantaneous velocity and driving force of working fluid are increased with the power of ultrasonic, and the startup time of PHP can be shortened simultaneously. Moreover, the microjet produced by the collapse of cavitation bubble and cavitation oscillation could promote the dispersion of nanoparticles. Thus, the heat transfer performance of high concentration nanofluid PHP is improved. The work would provide useful inspiration for further development and application of PHP with ultrasonic. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Experimental Study on Heat Transfer Performance of Pulsating Heat Pipe with Refrigerants
    WANG Xingyu
    JIA Li
    JournalofThermalScience, 2016, 25 (05) : 449 - 453
  • [32] EXPERIMENTAL STUDY ON HEAT TRANSFER CHARACTERISTIC OF PLATE PULSATING HEAT PIPE
    Quan, Li
    Jia, Li
    PROCEEDINGS OF THE ASME MICRO/NANOSCALE HEAT AND MASS TRANSFER INTERNATIONAL CONFERENCE, VOL 3, 2010, : 361 - 366
  • [33] NUMERICAL STUDY ON FLOW AND HEAT AND MASS TRANSFER IN PULSATING HEAT PIPE
    Liu, Jian-Hong
    Shang, Fu-Min
    Efimov, Nikolay
    PROCEEDINGS OF THE ASME 6TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2019, 2019,
  • [34] Experimental study on heat-transfer characteristic of pulsating heat pipe
    He, Qinbo
    Zheng, Zhaozhi
    ADVANCES IN ENERGY SCIENCE AND EQUIPMENT ENGINEERING, 2015, : 1535 - 1539
  • [35] Experimental study on heat transfer performance of pulsating heat pipe with refrigerants
    Xingyu Wang
    Li Jia
    Journal of Thermal Science, 2016, 25 : 449 - 453
  • [36] Flow and heat transfer in a nano-fluid pulsating heat pipe
    Qu, Wei
    Yuan, Da-Zhong
    Li, Yu-Hua
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2009, 30 (10): : 1697 - 1699
  • [37] Experimental Investigation on the Thermal Performance of Pulsating Heat Pipe Heat Exchangers
    Yang, Kai-Shing
    Jiang, Ming-Yean
    Tseng, Chih-Yung
    Wu, Shih-Kuo
    Shyu, Jin-Cherng
    ENERGIES, 2020, 13 (01)
  • [38] Experimental Study on the Heat Transfer Enhancement of Oscillating-Flow Heat Pipe by Acoustic Cavitation
    Xian, H.
    Liu, D.
    Shang, F.
    Yang, Y.
    Chen, G.
    DRYING TECHNOLOGY, 2009, 27 (04) : 542 - 547
  • [39] HEAT-TRANSFER IN A PIPE WITH SUPERIMPOSED PULSATING FLOW
    FALLEN, M
    WARME UND STOFFUBERTRAGUNG-THERMO AND FLUID DYNAMICS, 1982, 16 (02): : 89 - 99
  • [40] HEAT-TRANSFER WITH LAMINAR PULSATING FLOW IN A PIPE
    FAGHRI, M
    JAVDANI, K
    FAGHRI, A
    LETTERS IN HEAT AND MASS TRANSFER, 1979, 6 (04): : 259 - 270