Iteratively reweighted generalized least squares for estimation and testing with correlated data: An inference function framework

被引:9
|
作者
Loader, Catherine [1 ]
Pilla, Rarnani S. [2 ,3 ,4 ]
机构
[1] Univ Auckland, Dept Stat, Auckland 1142, New Zealand
[2] Stanford Univ, Kavli Inst Particle Phys & Cosmol, Stanford, CA 94305 USA
[3] Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Dept Stat, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
covariance structure; generalized estimating equations; generalized method of moments; IRGLS algorithm; longitudinal data; QIF-LIB; quadratic inference functions;
D O I
10.1198/106186007X238828
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The focus of this article is on fitting regression models and testing of general linear hypotheses for correlated data using quasi-likelihood based techniques. The class of generalized method of moments or GMMs provides an elegant approach for estimating a vector of regression parameters from a set of score functions. Extending the principle of the GMMs, in the generalized estimating equation framework, leads to a quadratic inference function or QIF approach for the analysis of correlated data. We derive an iteratively reweighted generalized least squares or IRGLS algorithm for finding the QIF estimator and establish its convergence properties. A software library implementing the techniques is demonstrated through several datasets.
引用
收藏
页码:925 / 945
页数:21
相关论文
共 50 条
  • [31] ROBUST REGRESSION COMPUTATION USING ITERATIVELY REWEIGHTED LEAST-SQUARES
    OLEARY, DP
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (03) : 466 - 480
  • [32] Preconditioning for Accelerated Iteratively Reweighted Least Squares in Structured Sparsity Reconstruction
    Chen, Chen
    Huang, Junzhou
    He, Lei
    Li, Hongsheng
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2713 - 2720
  • [33] Improved iteratively reweighted least squares algorithms for sparse recovery problem
    Liu, Yufeng
    Zhu, Zhibin
    Zhang, Benxin
    IET IMAGE PROCESSING, 2022, 16 (05) : 1324 - 1340
  • [34] Robust registration of point sets using iteratively reweighted least squares
    Bergstrom, Per
    Edlund, Ove
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (03) : 543 - 561
  • [35] Baseline correction using adaptive iteratively reweighted penalized least squares
    Zhang, Zhi-Min
    Chen, Shan
    Liang, Yi-Zeng
    ANALYST, 2010, 135 (05) : 1138 - 1146
  • [36] Impulsive noise elimination using polynomial iteratively reweighted least squares
    Kuruoglu, EE
    Rayner, PJW
    Fitzgerald, WJ
    1996 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP, PROCEEDINGS, 1996, : 347 - 350
  • [37] Fast General Norm Approximation via Iteratively Reweighted Least Squares
    Samejima, Masaki
    Matsushita, Yasuyuki
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT II, 2017, 10117 : 207 - 221
  • [38] Iteratively reweighted least squares with random effects for maximum likelihood in generalized linear mixed effects models
    Zhang, Tonglin
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (16) : 3404 - 3425
  • [39] Iteratively reweighted generalized rank annihilation method 2.: Least squares property and variance expressions
    Faber, NM
    Boqué, R
    Ferré, J
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2001, 55 (1-2) : 91 - 100
  • [40] IMPROVED ITERATIVELY REWEIGHTED LEAST SQUARES FOR UNCONSTRAINED SMOOTHED lq MINIMIZATION
    Lai, Ming-Jun
    Xu, Yangyang
    Yin, Wotao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 927 - 957