Iteratively reweighted generalized least squares for estimation and testing with correlated data: An inference function framework

被引:9
|
作者
Loader, Catherine [1 ]
Pilla, Rarnani S. [2 ,3 ,4 ]
机构
[1] Univ Auckland, Dept Stat, Auckland 1142, New Zealand
[2] Stanford Univ, Kavli Inst Particle Phys & Cosmol, Stanford, CA 94305 USA
[3] Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Dept Stat, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
covariance structure; generalized estimating equations; generalized method of moments; IRGLS algorithm; longitudinal data; QIF-LIB; quadratic inference functions;
D O I
10.1198/106186007X238828
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The focus of this article is on fitting regression models and testing of general linear hypotheses for correlated data using quasi-likelihood based techniques. The class of generalized method of moments or GMMs provides an elegant approach for estimating a vector of regression parameters from a set of score functions. Extending the principle of the GMMs, in the generalized estimating equation framework, leads to a quadratic inference function or QIF approach for the analysis of correlated data. We derive an iteratively reweighted generalized least squares or IRGLS algorithm for finding the QIF estimator and establish its convergence properties. A software library implementing the techniques is demonstrated through several datasets.
引用
收藏
页码:925 / 945
页数:21
相关论文
共 50 条