Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation

被引:40
|
作者
Krishnan, Adit [1 ]
Das, Mahashweta [2 ]
Bendre, Mangesh [2 ]
Yang, Hao [2 ]
Sundaram, Hari [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Visa Res, Palo Alto, CA USA
关键词
Cross-Domain Recommendation; Contextual Invariants; Transfer Learning; Neural Layer Adaptation; Data Sparsity; OPTIMIZATION;
D O I
10.1145/3397271.3401078
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid proliferation of new users and items on the social web has aggravated the gray-sheep user/long-tail item challenge in recommender systems. Historically, cross-domain co-clustering methods have successfully leveraged shared users and items across dense and sparse domains to improve inference quality. However, they rely on shared rating data and cannot scale to multiple sparse target domains (i.e., the one-to-many transfer setting). This, combined with the increasing adoption of neural recommender architectures, motivates us to develop scalable neural layer-transfer approaches for cross-domain learning. Our key intuition is to guide neural collaborative filtering with domain-invariant components shared across the dense and sparse domains, improving the user and item representations learned in the sparse domains. We leverage contextual invariances across domains to develop these shared modules, and demonstrate that with user-item interaction context, we can learn-to-learn informative representation spaces even with sparse interaction data. We show the effectiveness and scalability of our approach on two public datasets and a massive transaction dataset from Visa, a global payments technology company (19% Item Recall, 3x faster vs. training separate models for each domain). Our approach is applicable to both implicit and explicit feedback settings.
引用
收藏
页码:1081 / 1090
页数:10
相关论文
共 50 条
  • [31] Cross-Domain Recommendation via Progressive Structural Alignment
    Zhao, Chuang
    Zhao, Hongke
    Li, Xiaomeng
    He, Ming
    Wang, Jiahui
    Fan, Jianping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2401 - 2415
  • [32] Cross-Domain Recommendation via Coupled Factorization Machines
    Li, Lile
    Do, Quan
    Liu, Wei
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 9965 - 9966
  • [33] Adaptive Adversarial Contrastive Learning for Cross-Domain Recommendation
    Hsu, Chi-Wei
    Chen, Chiao-Ting
    Huang, Szu-Hao
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (03)
  • [34] Learning Personalized Itemset Mapping for Cross-Domain Recommendation
    Zhang, Yinan
    Liu, Yong
    Han, Peng
    Miao, Chunyan
    Cui, Lizhen
    Li, Baoli
    Tang, Haihong
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2561 - 2567
  • [35] A deep selective learning network for cross-domain recommendation
    Liu, Huiting
    Liu, Qian
    Li, Peipei
    Zhao, Peng
    Wu, Xindong
    APPLIED SOFT COMPUTING, 2022, 125
  • [36] A personalized cross-domain recommendation with federated meta learning
    Zhao, Peng
    Jin, Yuanyang
    Ren, Xuebin
    Li, Yanan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71435 - 71450
  • [37] Deep Graph Mutual Learning for Cross-domain Recommendation
    Wang, Yifan
    Li, Yongkang
    Li, Shuai
    Song, Weiping
    Fan, Jiangke
    Gao, Shan
    Ma, Ling
    Cheng, Bing
    Cai, Xunliang
    Wang, Sheng
    Zhang, Ming
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 298 - 305
  • [38] DisenCDR: Learning Disentangled Representations for Cross-Domain Recommendation
    Cao, Jiangxia
    Lin, Xixun
    Cong, Xin
    Ya, Jing
    Liu, Tingwen
    Wang, Bin
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 267 - 277
  • [39] Cross-Domain Personalized Learning Resources Recommendation Method
    Wang, Long
    Zeng, Zhiyong
    Li, Ruizhi
    Pang, Hua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [40] CausalCDR: Causal Embedding Learning for Cross-domain Recommendation
    Li, Fengxin
    Liu, Hongyan
    He, Jun
    Du, Xiaoyong
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 553 - 561