Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation

被引:40
|
作者
Krishnan, Adit [1 ]
Das, Mahashweta [2 ]
Bendre, Mangesh [2 ]
Yang, Hao [2 ]
Sundaram, Hari [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Visa Res, Palo Alto, CA USA
关键词
Cross-Domain Recommendation; Contextual Invariants; Transfer Learning; Neural Layer Adaptation; Data Sparsity; OPTIMIZATION;
D O I
10.1145/3397271.3401078
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid proliferation of new users and items on the social web has aggravated the gray-sheep user/long-tail item challenge in recommender systems. Historically, cross-domain co-clustering methods have successfully leveraged shared users and items across dense and sparse domains to improve inference quality. However, they rely on shared rating data and cannot scale to multiple sparse target domains (i.e., the one-to-many transfer setting). This, combined with the increasing adoption of neural recommender architectures, motivates us to develop scalable neural layer-transfer approaches for cross-domain learning. Our key intuition is to guide neural collaborative filtering with domain-invariant components shared across the dense and sparse domains, improving the user and item representations learned in the sparse domains. We leverage contextual invariances across domains to develop these shared modules, and demonstrate that with user-item interaction context, we can learn-to-learn informative representation spaces even with sparse interaction data. We show the effectiveness and scalability of our approach on two public datasets and a massive transaction dataset from Visa, a global payments technology company (19% Item Recall, 3x faster vs. training separate models for each domain). Our approach is applicable to both implicit and explicit feedback settings.
引用
收藏
页码:1081 / 1090
页数:10
相关论文
共 50 条
  • [21] Sequential Transfer Learning: Cross-domain Novelty Seeking Trait Mining for Recommendation
    Zhuang, Fuzhen
    Zhou, Yingmin
    Zhang, Fuzheng
    Ao, Xiang
    Xie, Xing
    He, Qing
    WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2017, : 881 - 882
  • [22] A Cross-Domain Recommendation Model Based on Dual Attention Mechanism and Transfer Learning
    Chai Y.-M.
    Yun W.-L.
    Wang L.-M.
    Liu Z.
    Yun, Wu-Lian (yunwulll@163.com); Wang, Li-Ming (ielmwang@zzu.edu.cn), 1924, Science Press (43): : 1924 - 1942
  • [23] Domain transfer via cross-domain analogy
    Klenk, Matthew
    Forbus, Ken
    COGNITIVE SYSTEMS RESEARCH, 2009, 10 (03) : 240 - 250
  • [24] Disentangled Representations for Cross-Domain Recommendation via Heterogeneous Graph Contrastive Learning
    Liu, Xinyue
    Li, Bohan
    Chen, Yijun
    Li, Xiaoxue
    Xu, Shuai
    Yin, Hongzhi
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2024, PT 3, 2025, 14852 : 35 - 50
  • [25] FedDCSR: Federated Cross-domain Sequential Recommendation via Disentangled Representation Learning
    Zhang, Hongyu
    Zheng, Dongyi
    Yang, Xu
    Feng, Jiyuan
    Liao, Qing
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 535 - 543
  • [26] Personalized Transfer of User Preferences for Cross-domain Recommendation
    Zhu, Yongchun
    Tang, Zhenwei
    Liu, Yudan
    Zhuang, Fuzhen
    Xie, Ruobing
    Zhang, Xu
    Lin, Leyu
    He, Qing
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 1507 - 1515
  • [27] Learning Domain Semantics and Cross-Domain Correlations for Paper Recommendation
    Xie, Yi
    Sun, Yuqing
    Bertino, Elisa
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 706 - 715
  • [28] Selective Knowledge Transfer for Cross-Domain Collaborative Recommendation
    Zhang, Hongwei
    Kong, Xiangwei
    Zhang, Yujia
    IEEE ACCESS, 2021, 9 : 48039 - 48051
  • [29] Cross-Domain Recommendation via Preference Propagation GraphNet
    Zhao, Cheng
    Li, Chenliang
    Fu, Cong
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2165 - 2168
  • [30] Cross-domain Recommendation via Dual Adversarial Adaptation
    Su, Hongzu
    Li, Jingjing
    Du, Zhekai
    Zhu, Lei
    Lu, Ke
    Shen, Heng Tao
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (03)