On positive solutions of fully nonlinear degenerate Lane-Emden type equations

被引:11
|
作者
Galise, Giulio [1 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Cesare Saldini 50, I-20133 Milan, Italy
关键词
Fully nonlinear degenerate elliptic operators; Nonproper sub/superlinear equations; Critical exponents; Comparison principle; Viscosity solutions; VISCOSITY SOLUTIONS; ELLIPTIC-EQUATIONS; MAXIMUM PRINCIPLE; DIRICHLET PROBLEM; EXISTENCE;
D O I
10.1016/j.jde.2018.08.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and uniqueness results of positive viscosity solutions of fully nonlinear degenerate elliptic equations with power-like zero order perturbations in bounded domains. The principal part of such equations is either P-k(-) (D(2)u) or P-k(+)(D(2)u), some sort of "truncated Laplacians", given respectively by the smallest and the largest partial sum of k eigenvalues of the Hessian matrix. New phenomena with respect to the semilinear case occur. Moreover, for P-k(-), we explicitly find the critical exponent p of the power nonlinearity that separates the existence and nonexistence range of nontrivial solutions with zero Dirichlet boundary condition. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1675 / 1697
页数:23
相关论文
共 50 条
  • [41] Numerical Solution of Lane-Emden Equations
    Sharma, Dinkar
    Kaur, Ramandeep
    ADVANCES IN BASIC SCIENCES (ICABS 2019), 2019, 2142
  • [42] Taylor wavelet solution of linear and nonlinear Lane-Emden equations
    Gumgum, Sevin
    APPLIED NUMERICAL MATHEMATICS, 2020, 158 (158) : 44 - 53
  • [43] A residual method using Bezier curves for singular nonlinear equations of Lane-Emden type
    Adiyaman, Meltem E.
    Oger, Volkan
    KUWAIT JOURNAL OF SCIENCE, 2017, 44 (04) : 9 - 18
  • [44] Uniqueness, multiplicity and nondegeneracy of positive solutions to the Lane-Emden problem
    Li, Houwang
    Wei, Juncheng
    Zou, Wenming
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 : 1 - 67
  • [45] Existence and uniqueness of positive radial solutions for the Lane-Emden system
    Dalmasso, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (03) : 341 - 348
  • [46] THE ZHOU'S METHOD FOR SOLVING THE NONLINEAR LANE-EMDEN TYPE EQUATIONS: A SPECIAL CASE
    Cardenas, Pedro P.
    Devia, Diana M.
    Mesa, Fernando
    MOMENTO-REVISTA DE FISICA, 2013, (47): : 1 - 14
  • [47] A numerical approach for solving a class of the nonlinear Lane-Emden type equations arising in astrophysics
    Yuzbasi, Suayip
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (18) : 2218 - 2230
  • [48] Rational Legendre pseudospectral approach for solving nonlinear differential equations of Lane-Emden type
    Parand, K.
    Shahini, M.
    Dehghan, Mehdi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) : 8830 - 8840
  • [49] ULTRASPHERICAL WAVELETS METHOD FOR SOLVING LANE-EMDEN TYPE EQUATIONS
    Youssri, Y. H.
    Abd-Elhameed, W. M.
    Doha, E. H.
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (9-10): : 1298 - 1314
  • [50] A numerical approach for solving singular nonlinear Lane-Emden type equations arising in astrophysics
    Nasab, A. Kazemi
    Kilicman, A.
    Atabakan, Z. Pashazadeh
    Leong, W. J.
    NEW ASTRONOMY, 2015, 34 : 178 - 186