共 50 条
On positive solutions of fully nonlinear degenerate Lane-Emden type equations
被引:11
|作者:
Galise, Giulio
[1
]
机构:
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Cesare Saldini 50, I-20133 Milan, Italy
关键词:
Fully nonlinear degenerate elliptic operators;
Nonproper sub/superlinear equations;
Critical exponents;
Comparison principle;
Viscosity solutions;
VISCOSITY SOLUTIONS;
ELLIPTIC-EQUATIONS;
MAXIMUM PRINCIPLE;
DIRICHLET PROBLEM;
EXISTENCE;
D O I:
10.1016/j.jde.2018.08.014
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove existence and uniqueness results of positive viscosity solutions of fully nonlinear degenerate elliptic equations with power-like zero order perturbations in bounded domains. The principal part of such equations is either P-k(-) (D(2)u) or P-k(+)(D(2)u), some sort of "truncated Laplacians", given respectively by the smallest and the largest partial sum of k eigenvalues of the Hessian matrix. New phenomena with respect to the semilinear case occur. Moreover, for P-k(-), we explicitly find the critical exponent p of the power nonlinearity that separates the existence and nonexistence range of nontrivial solutions with zero Dirichlet boundary condition. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1675 / 1697
页数:23
相关论文