On positive solutions of fully nonlinear degenerate Lane-Emden type equations

被引:11
|
作者
Galise, Giulio [1 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Cesare Saldini 50, I-20133 Milan, Italy
关键词
Fully nonlinear degenerate elliptic operators; Nonproper sub/superlinear equations; Critical exponents; Comparison principle; Viscosity solutions; VISCOSITY SOLUTIONS; ELLIPTIC-EQUATIONS; MAXIMUM PRINCIPLE; DIRICHLET PROBLEM; EXISTENCE;
D O I
10.1016/j.jde.2018.08.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and uniqueness results of positive viscosity solutions of fully nonlinear degenerate elliptic equations with power-like zero order perturbations in bounded domains. The principal part of such equations is either P-k(-) (D(2)u) or P-k(+)(D(2)u), some sort of "truncated Laplacians", given respectively by the smallest and the largest partial sum of k eigenvalues of the Hessian matrix. New phenomena with respect to the semilinear case occur. Moreover, for P-k(-), we explicitly find the critical exponent p of the power nonlinearity that separates the existence and nonexistence range of nontrivial solutions with zero Dirichlet boundary condition. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1675 / 1697
页数:23
相关论文
共 50 条
  • [1] On the Lane-Emden equations with fully nonlinear operators
    Birindelli, I
    Demengel, F
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (09) : 725 - 730
  • [2] A PRIORI BOUNDS FOR POSITIVE RADIAL SOLUTIONS OF QUASILINEAR EQUATIONS OF LANE-EMDEN TYPE
    Bae, Soohyun
    ARCHIVUM MATHEMATICUM, 2023, 59 (02): : 155 - 162
  • [3] A PRIORI BOUNDS FOR POSITIVE RADIAL SOLUTIONS OF QUASILINEAR EQUATIONS OF LANE-EMDEN TYPE
    Bae, Soohyun
    ARCHIVUM MATHEMATICUM, 2023, 59 (03): : 155 - 162
  • [4] Global Behavior of Positive Solutions of a Generalized Lane-Emden System of Nonlinear Differential Equations
    Alsaedi, Ramzi S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [5] Numerical Solutions of Linear and Nonlinear Lane-Emden Type Equations Magnus Expansion Method
    Kome, Cahit
    Atay, Mehmet Tarik
    Eryilmaz, Aytekin
    Kome, Sure
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [6] Non-existence of positive solutions to nonlocal Lane-Emden equations
    Wang, Xiaohuan
    Zhang, Jihui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (01)
  • [7] Existence, nonexistence and uniqueness for Lane-Emden type fully nonlinear systems
    Maia, Liliane
    Nornberg, Gabrielle
    Pacella, Filomena
    NONLINEARITY, 2023, 36 (03) : 1510 - 1546
  • [8] Separable solutions of quasilinear Lane-Emden equations
    Porretta, Alessio
    Veron, Laurent
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) : 755 - 774
  • [9] Stable weak solutions to weighted Kirchhoff equations of Lane-Emden type
    Wei, Yunfeng
    Yang, Hongwei
    Yu, Hongwang
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [10] Stable solutions to quasilinear Schrodinger equations of Lane-Emden type with a parameter
    Wei, Yunfeng
    Yang, Hongwei
    Yu, Hongwang
    Hu, Rui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 9987 - 9997