Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models

被引:82
|
作者
Zeng, Ping [1 ,2 ]
Zhou, Xiang [2 ,3 ]
机构
[1] Xuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
英国惠康基金; 美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; BAYESIAN VARIABLE SELECTION; VARIATIONAL INFERENCE; RISK PREDICTION; ACCURACY; LOCI; ARCHITECTURE; TRANSCRIPTOME; HERITABILITY; LIVESTOCK;
D O I
10.1038/s41467-017-00470-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using genotype data to perform accurate genetic prediction of complex traits can facilitate genomic selection in animal and plant breeding programs, and can aid in the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling all genetic variants together via polygenic methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet process regression model. Dirichlet process regression is non-parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus enjoys robust prediction performance across a broad spectrum of genetic architectures. We compare Dirichlet process regression with several commonly used prediction methods with simulations. We further apply Dirichlet process regression to predict gene expressions, to conduct PrediXcan based gene set test, to perform genomic selection of four traits in two species, and to predict eight complex traits in a human cohort.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Flexible non-parametric regression models for compositional response data with zeros
    Michail Tsagris
    Abdulaziz Alenazi
    Connie Stewart
    Statistics and Computing, 2023, 33
  • [32] Non-parametric regression for compositional data
    Di Marzio, Marco
    Panzera, Agnese
    Venieri, Catia
    STATISTICAL MODELLING, 2015, 15 (02) : 113 - 133
  • [33] Learning Non-Parametric Models with Guarantees: A Smooth Lipschitz Regression Approach
    Maddalena, Emilio T.
    Jones, Colin N.
    IFAC PAPERSONLINE, 2020, 53 (02): : 965 - 970
  • [34] Testing for additivity in non-parametric regression
    Zhang, Yichi
    Staicu, Ana-Maria
    Maity, Arnab
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (04): : 445 - 462
  • [35] Imitation Learning with Non-Parametric Regression
    Vaandrager, Maarten
    Babuska, Robert
    Busoniu, Lucian
    Lopes, Gabriel A. D.
    2012 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, THETA 18TH EDITION, 2012, : 91 - 96
  • [36] Non-parametric Model Adaptive Control Based on Gaussian Process Regression
    Lin, Chenxu
    Li, Mingyao
    Zhu, Juanping
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 473 - 478
  • [37] Estimation of dynamic latent variable models using simulated non-parametric moments
    Creel, Michael
    Kristensen, Dennis
    ECONOMETRICS JOURNAL, 2012, 15 (03): : 490 - 515
  • [38] Semi- and non-parametric Bayesian analysis of duration models with Dirichlet priors: A survey
    Florens, JP
    Mouchart, M
    Rolin, JM
    INTERNATIONAL STATISTICAL REVIEW, 1999, 67 (02) : 187 - 210
  • [39] Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models
    Galtchouka, L.
    Pergamenshchikovb, S.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (01) : 1 - 18
  • [40] Erratum of: 'Non-parametric models for functional data, with application in regression, time-series prediction and curve discrimination'
    Ferraty, F.
    Vieu, P.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (02) : 187 - 189