Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models

被引:82
|
作者
Zeng, Ping [1 ,2 ]
Zhou, Xiang [2 ,3 ]
机构
[1] Xuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
英国惠康基金; 美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; BAYESIAN VARIABLE SELECTION; VARIATIONAL INFERENCE; RISK PREDICTION; ACCURACY; LOCI; ARCHITECTURE; TRANSCRIPTOME; HERITABILITY; LIVESTOCK;
D O I
10.1038/s41467-017-00470-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using genotype data to perform accurate genetic prediction of complex traits can facilitate genomic selection in animal and plant breeding programs, and can aid in the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling all genetic variants together via polygenic methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet process regression model. Dirichlet process regression is non-parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus enjoys robust prediction performance across a broad spectrum of genetic architectures. We compare Dirichlet process regression with several commonly used prediction methods with simulations. We further apply Dirichlet process regression to predict gene expressions, to conduct PrediXcan based gene set test, to perform genomic selection of four traits in two species, and to predict eight complex traits in a human cohort.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Non-Parametric Subject Prediction
    Wang, Shenghui
    Koopman, Rob
    Englebienne, Gwenn
    DIGITAL LIBRARIES FOR OPEN KNOWLEDGE, TPDL 2019, 2019, 11799 : 312 - 326
  • [22] A NEW DIFFERENCE METHOD FOR VARIANCE ESTIMATION IN NON-PARAMETRIC REGRESSION MODELS
    Haggag, Magda M. M.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2019, 57 (02) : 155 - 189
  • [23] Non-Parametric Regression and Riesz Estimators
    Kountzakis, Christos
    Tsachouridou-Papadatou, Vasileia
    AXIOMS, 2023, 12 (04)
  • [24] ROC Curves in Non-Parametric Location-Scale Regression Models
    Gonzalez-Manteiga, Wenceslao
    Carlos Pardo-Fernandez, Juan
    van Keilegom, Ingrid
    SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (01) : 169 - 184
  • [25] A NOTE ON NON-PARAMETRIC CENSORED REGRESSION
    MCLEISH, DL
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1983, 18 (01) : 1 - 6
  • [26] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [27] Non-parametric Regression for Circular Responses
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 238 - 255
  • [28] Parametrically guided non-parametric regression
    Glad, IK
    SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (04) : 649 - 668
  • [29] Non-parametric regression with wavelet kernels
    Rakotomamonjy, A
    Mary, X
    Canu, S
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (02) : 153 - 163
  • [30] Flexible non-parametric regression models for compositional response data with zeros
    Tsagris, Michail
    Alenazi, Abdulaziz
    Stewart, Connie
    STATISTICS AND COMPUTING, 2023, 33 (05)