Eigenvalue location for nonnegative and Z-matrices

被引:1
|
作者
Fallat, SM [1 ]
Johnson, CR
Smith, RL
van den Driessche, P
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
eigenvalue location; Fisher's inequality; M-matrices; nonnegative matrices;
D O I
10.1016/S0024-3795(97)10081-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L-0(k) denote the class of n x n Z-matrices A = tI - B with B greater than or equal to 0 and rho(B) less than or equal to t < rho(k+1)(B), where rho(k), (B) denotes the maximum spectral radius of k x k principal submatrices of B. Bounds are determined on the number of eigenvalues with positive real parts for A is an element of L-0(k), where ii satisfies, [n/2] less than or equal to k less than or equal to n - 1. For these classes, when k = ii - 1 and n - 2, wedges are identified that contain only the unique negative eigenvalue of A. These results lead to new eigenvalue location regions for nonnegative matrices; (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 50 条
  • [31] Construction of nonnegative matrices and the inverse eigenvalue problem
    Smigoc, H
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (02): : 85 - 96
  • [32] On a class of multi-level preconditioners for Z-matrices
    Hasani M.
    Salkuyeh D.K.
    Afrika Matematika, 2015, 26 (1-2) : 201 - 213
  • [33] Determinant and eigenvalue inequalities involving nonnegative matrices
    Rajesh Sharma
    Manish Pal
    Anjana Sharma
    Advances in Operator Theory, 2023, 8
  • [34] Correction to: On the preconditioned AOR iterative method for Z-matrices
    Davod Khojasteh Salkuyeh
    Mohsen Hasani
    Fatemeh Panjeh Ali Beik
    Juan Song
    Yongzhong Song
    Computational and Applied Mathematics, 2020, 39
  • [35] Linear complementarity results for Z-matrices on Lorentz cone
    Balaji, R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 480 : 107 - 114
  • [36] More on hidden Z-matrices and linear complementarity problem
    Jana, R.
    Dutta, A.
    Das, A. K.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (06): : 1151 - 1160
  • [37] New preconditioned AOR iterative method for Z-matrices
    Wang, Guangbin
    Zhang, Ning
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2011, 37 (1-2) : 103 - 117
  • [38] A generalization of the adaptive Gauss-Seidel method for Z-matrices
    Kotakemori, H
    Niki, H
    Okamoto, N
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1997, 64 (3-4) : 317 - 326
  • [39] FASTER COMPUTATION OF Z-MATRICES FOR TRIANGULAR SEGMENTS IN PLANAR CIRCUITS
    LEE, SH
    BENALLA, A
    GUPTA, KC
    INTERNATIONAL JOURNAL OF MICROWAVE AND MILLIMETER-WAVE COMPUTER-AIDED ENGINEERING, 1992, 2 (02): : 98 - 107
  • [40] On testing nonnegativity of principal minors of Z-matrices using simplexmethod
    Dubey, Dipti
    Neogy, S. K.
    ANNALS OF OPERATIONS RESEARCH, 2022, 315 (02) : 985 - 992