Eigenvalue location for nonnegative and Z-matrices

被引:1
|
作者
Fallat, SM [1 ]
Johnson, CR
Smith, RL
van den Driessche, P
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
eigenvalue location; Fisher's inequality; M-matrices; nonnegative matrices;
D O I
10.1016/S0024-3795(97)10081-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L-0(k) denote the class of n x n Z-matrices A = tI - B with B greater than or equal to 0 and rho(B) less than or equal to t < rho(k+1)(B), where rho(k), (B) denotes the maximum spectral radius of k x k principal submatrices of B. Bounds are determined on the number of eigenvalues with positive real parts for A is an element of L-0(k), where ii satisfies, [n/2] less than or equal to k less than or equal to n - 1. For these classes, when k = ii - 1 and n - 2, wedges are identified that contain only the unique negative eigenvalue of A. These results lead to new eigenvalue location regions for nonnegative matrices; (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 50 条
  • [21] A note on generalized Perron complements of Z-matrices
    Ren, ZG
    Huang, TZ
    Cheng, XY
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2006, 15 : 8 - 13
  • [22] HIDDEN Z-MATRICES WITH POSITIVE PRINCIPAL MINORS
    PANG, JS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 23 (FEB) : 201 - 215
  • [23] On hidden Z-matrices and the linear complementarity problem
    Dubey, Dipti
    Neogy, S. K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 496 : 81 - 100
  • [24] On the preconditioned AOR iterative method for Z-matrices
    Salkuyeh, Davod Khojasteh
    Hasani, Mohsen
    Beik, Fatemeh Panjeh Ali
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (02): : 877 - 883
  • [25] The Zero Curvature Form of Integrable Hierarchies in the Z x Z-Matrices
    Helminck, G. F.
    Opimakh, A. V.
    ALGEBRA COLLOQUIUM, 2012, 19 (02) : 237 - 262
  • [26] On optimal improvements of classical iterative schemes for Z-matrices
    Noutsos, D
    Tzoumas, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 188 (01) : 89 - 106
  • [27] Determinant and eigenvalue inequalities involving nonnegative matrices
    Sharma, Rajesh
    Pal, Manish
    Sharma, Anjana
    ADVANCES IN OPERATOR THEORY, 2023, 8 (03)
  • [28] On the inverse eigenvalue problem of symmetric nonnegative matrices
    Nazari, A. M.
    Mashayekhi, A.
    Nezami, A.
    MATHEMATICAL SCIENCES, 2020, 14 (01) : 11 - 19
  • [29] Inverse Eigenvalue Problem of Bisymmetric Nonnegative Matrices
    Nazari, A. M.
    Aslami, P.
    Nezami, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (08)
  • [30] On the inverse eigenvalue problem of symmetric nonnegative matrices
    A. M. Nazari
    A. Mashayekhi
    A. Nezami
    Mathematical Sciences, 2020, 14 : 11 - 19