共 50 条
Eigenvalue location for nonnegative and Z-matrices
被引:1
|作者:
Fallat, SM
[1
]
Johnson, CR
Smith, RL
van den Driessche, P
机构:
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
基金:
美国国家科学基金会;
加拿大自然科学与工程研究理事会;
关键词:
eigenvalue location;
Fisher's inequality;
M-matrices;
nonnegative matrices;
D O I:
10.1016/S0024-3795(97)10081-7
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let L-0(k) denote the class of n x n Z-matrices A = tI - B with B greater than or equal to 0 and rho(B) less than or equal to t < rho(k+1)(B), where rho(k), (B) denotes the maximum spectral radius of k x k principal submatrices of B. Bounds are determined on the number of eigenvalues with positive real parts for A is an element of L-0(k), where ii satisfies, [n/2] less than or equal to k less than or equal to n - 1. For these classes, when k = ii - 1 and n - 2, wedges are identified that contain only the unique negative eigenvalue of A. These results lead to new eigenvalue location regions for nonnegative matrices; (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:187 / 198
页数:12
相关论文