A biocompatible pressure sensor based on a 3D-printed scaffold functionalized with PEDOT:PSS for biomedical applications

被引:7
|
作者
Cavallo, Aida [1 ,2 ]
Beccatelli, Matteo [3 ]
Favero, Alessia [3 ]
Al Kayal, Tamer [1 ]
Seletti, Davide [3 ]
Losi, Paola [1 ]
Soldani, Giorgio [1 ]
Coppede, Nicola [3 ]
机构
[1] CNR, Inst Clin Physiol, Lab Regenerat Med Biomat & Adv Therapies, Massa, Italy
[2] Scuola Super Sant Anna, Inst Life Sci, Pisa, Italy
[3] CNR, Inst Mat Elect & Magnetism, Parma, Italy
关键词
Pressure sensor; Flexible sensor; Biocompatible sensor; 3D printing; Conductive polymer;
D O I
10.1016/j.orgel.2021.106204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Personalized health-care monitoring, such as human motion and gait, can provide valuable information useful for prevention and diagnosis of a variety of diseases and also in patients rehabilitation. By employing suitable biocompatible materials that possess tunable compression properties related to 3D structure and able to convert the strain stimuli into a detectable signal, pressure sensors for human motion monitoring can be developed. In this study, our purpose is to obtain a conductive and biocompatible scaffold able to transform the mechanical deformations caused by an applied pressure to an electrical resistance variations. In particular, the effect of a conductive biocompatible functionalization with PEDOT:PSS polymer on thermoplastic silicone polycarbonate polyurethane (CarboSil) scaffold presenting five different structures have been studied by mechanical and electrical tests. The scaffold stiffness depends on structures features but it is not affected by the PEDOT:PSS coating. The electrical tests show a linear response on a wide range of pressure loads with all the tested polymeric scaffolds. Two scaffolds show the higher conductivity respect to other samples. Therefore, the scaffold structure network influences the electrical sensor response. The possibility to exploit the 3D printing tecnology with CarboSil paves the way to a new class of customizable, easy to manufacture and biocompatible integrated devices for medical applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Biocompatibility of Developing 3D-Printed Tubular Scaffold Coated with Nanofibers for Bone Applications
    Carolina Vazquez-Vazquez, Febe
    Alejandro Chanes-Cuevas, Osmar
    Masuoka, David
    Arenas Alatorre, Jesus
    Chavarria-Bolanos, Daniel
    Roberto Vega-Baudrit, Jose
    Serrano-Bello, Janeth
    Antonio Alvarez-Perez, Marco
    JOURNAL OF NANOMATERIALS, 2019, 2019
  • [42] Elastolytic-sensitive 3D-printed chitosan scaffold for wound healing applications
    Ovidio Catanzano
    Lisa Elviri
    Carlo Bergonzi
    Annalisa Bianchera
    Ruggero Bettini
    Antonella Bandiera
    MRS Communications, 2021, 11 : 924 - 930
  • [43] Anisotropic piezoresistive response of 3D-printed pressure sensor based on ABS/MWCNT nanocomposite
    Quaresma, Luciano J. B.
    Oliveira, Dhonata S. C.
    Dias, Rosielem S.
    Alves, Kelly C.
    de Barros, Luiz G. D.
    Pessin, Gustavo
    Sinatora, Amilton
    Paraguassu, Waldeci
    dos Reis, Marcos A. L.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Scalable 3D-printed lattices for pressure control in fluid applications
    Woodward, Ian R.
    Attia, Lucas
    Patel, Premal
    Fromen, Catherine A.
    AICHE JOURNAL, 2021, 67 (12)
  • [45] Elastolytic-sensitive 3D-printed chitosan scaffold for wound healing applications
    Catanzano, Ovidio
    Elviri, Lisa
    Bergonzi, Carlo
    Bianchera, Annalisa
    Bettini, Ruggero
    Bandiera, Antonella
    MRS COMMUNICATIONS, 2021, 11 (06) : 924 - 930
  • [46] 3D Printed Ultrasoft and Adhesive PEDOT:PSS-Based Hydrogel for Bioelectronics
    Zhang, Xiaoli
    Li, Ding
    Liu, Guiqun
    ACS APPLIED POLYMER MATERIALS, 2025, 7 (03): : 1531 - 1539
  • [47] Calcium Carbonate Coating of 3D-Printed PLA Scaffolds Intended for Biomedical Applications
    Donate, Ricardo
    Paz, Ruben
    Quintana, Alvaro
    Bordon, Pablo
    Monzon, Mario
    POLYMERS, 2023, 15 (11)
  • [48] 3D-printed Guided Mode Resonance Readout System for Biomedical and Environmental Applications
    Deb, Hironmay
    Srisuai, Nantarat
    Bonruang, Sakoolkan
    Jolivot, Romuald
    Promptmas, Chamras
    Mohammed, Waleed S.
    ENGINEERING JOURNAL-THAILAND, 2021, 25 (06): : 35 - 43
  • [49] PEDOT: PSS/QCM-based multimodal humidity and pressure sensor
    Muckley, Eric S.
    Lynch, James
    Kumar, Rajeev
    Sumpter, Bobby
    Ivanov, Ilia N.
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 236 : 91 - 98
  • [50] A chitosan based scaffold with enhanced mechanical and biocompatible performance for biomedical applications
    Dong, Xianzhen
    Cheng, Qiao
    Long, Yanpiao
    Xu, Chao
    Fang, Honglin
    Chen, Yuzhe
    Dai, Honglian
    POLYMER DEGRADATION AND STABILITY, 2020, 181