A biocompatible pressure sensor based on a 3D-printed scaffold functionalized with PEDOT:PSS for biomedical applications

被引:7
|
作者
Cavallo, Aida [1 ,2 ]
Beccatelli, Matteo [3 ]
Favero, Alessia [3 ]
Al Kayal, Tamer [1 ]
Seletti, Davide [3 ]
Losi, Paola [1 ]
Soldani, Giorgio [1 ]
Coppede, Nicola [3 ]
机构
[1] CNR, Inst Clin Physiol, Lab Regenerat Med Biomat & Adv Therapies, Massa, Italy
[2] Scuola Super Sant Anna, Inst Life Sci, Pisa, Italy
[3] CNR, Inst Mat Elect & Magnetism, Parma, Italy
关键词
Pressure sensor; Flexible sensor; Biocompatible sensor; 3D printing; Conductive polymer;
D O I
10.1016/j.orgel.2021.106204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Personalized health-care monitoring, such as human motion and gait, can provide valuable information useful for prevention and diagnosis of a variety of diseases and also in patients rehabilitation. By employing suitable biocompatible materials that possess tunable compression properties related to 3D structure and able to convert the strain stimuli into a detectable signal, pressure sensors for human motion monitoring can be developed. In this study, our purpose is to obtain a conductive and biocompatible scaffold able to transform the mechanical deformations caused by an applied pressure to an electrical resistance variations. In particular, the effect of a conductive biocompatible functionalization with PEDOT:PSS polymer on thermoplastic silicone polycarbonate polyurethane (CarboSil) scaffold presenting five different structures have been studied by mechanical and electrical tests. The scaffold stiffness depends on structures features but it is not affected by the PEDOT:PSS coating. The electrical tests show a linear response on a wide range of pressure loads with all the tested polymeric scaffolds. Two scaffolds show the higher conductivity respect to other samples. Therefore, the scaffold structure network influences the electrical sensor response. The possibility to exploit the 3D printing tecnology with CarboSil paves the way to a new class of customizable, easy to manufacture and biocompatible integrated devices for medical applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications
    Aouni El-Hajje
    Elizabeth C. Kolos
    Jun Kit Wang
    Saeed Maleksaeedi
    Zeming He
    Florencia Edith Wiria
    Cleo Choong
    Andrew J. Ruys
    Journal of Materials Science: Materials in Medicine, 2014, 25 : 2471 - 2480
  • [32] An overview of 3D-printed shape memory alloys and applications in biomedical engineering
    Sima, Yingyu
    Wang, Wu
    Abu-Tahon, Medhat Ahmed
    Jiang, Youwei
    Wan, Kun
    El-Bahy, Zeinhom M.
    Wang, Jingfeng
    He, Quanguo
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (05)
  • [33] Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications
    El-Hajje, Aouni
    Kolos, Elizabeth C.
    Wang, Jun Kit
    Maleksaeedi, Saeed
    He, Zeming
    Wiria, Florencia Edith
    Choong, Cleo
    Ruys, Andrew J.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2014, 25 (11) : 2471 - 2480
  • [34] Imparting High Conductivity to 3D Printed PEDOT:PSS
    Hill, Ian M.
    Hernandez, Victor
    Xu, Bohao
    Piceno, Josiah A.
    Misiaszek, John
    Giglio, Adrian
    Junez, Emily
    Chen, Jiajun
    Ashby, Paul D.
    Jordan, Robert S.
    Wang, Yue
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (06) : 3989 - 3998
  • [35] Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold
    Xu, Xiongcheng
    Xiao, Long
    Xu, Yanmei
    Zhuo, Jin
    Yang, Xue
    Li, Li
    Xiao, Nianqi
    Tao, Jing
    Zhong, Quan
    Li, Yanfen
    Chen, Yuling
    Du, Zhibin
    Luo, Kai
    REGENERATIVE BIOMATERIALS, 2021, 8 (06)
  • [36] Low Cost Humidity Sensor Based on PANI/PEDOT:PSS Printed on Paper
    Morais, Rogerio M.
    Klem, Maykel dos Santos
    Nogueira, Gabriel Leonardo
    Gomes, Tiago Carneiro
    Alves, Neri
    IEEE SENSORS JOURNAL, 2018, 18 (07) : 2647 - 2651
  • [37] Knee Cartilage Regenerated With 3D-Printed Scaffold
    Hampton, Tracy
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 313 (05): : 455 - 455
  • [38] Printed Temperature Sensor Based on PEDOT: PSS-Graphene Oxide Composite
    Soni, Mahesh
    Bhattacharjee, Mitradip
    Ntagios, Markellos
    Dahiya, Ravinder
    IEEE SENSORS JOURNAL, 2020, 20 (14) : 7525 - 7531
  • [39] A 3D-Printed Scaffold for Repairing Bone Defects
    Dong, Jianghui
    Ding, Hangxing
    Wang, Qin
    Wang, Liping
    POLYMERS, 2024, 16 (05)
  • [40] 3D-printed Bioresorbable Scaffold for Periodontal Repair
    Rasperini, G.
    Pilipchuk, S. P.
    Flanagan, C. L.
    Park, C. H.
    Pagni, G.
    Hollister, S. J.
    Giannobile, W. V.
    JOURNAL OF DENTAL RESEARCH, 2015, 94 (09) : 153S - 157S