Further asymptotic size Ramsey results obtained via linear programming

被引:0
|
作者
Pikhurko, O [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
关键词
size Ramsey number; complete bipartite graphs;
D O I
10.1016/S0012-365X(03)00237-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the author (SIAM J. Discrete Math. 16 (2003) 99-113) has asymptotically computed (via linear programming) size Ramsey numbers involving complete bipartite graphs. Here an attempt is made to extend this method to a larger class of problems by considering the 'simplest' open case when one of the forbidden graphs is S-1,S-n (the n-star K-1,K-n with an added leaf). Although we obtain new non-trivial results such as, for example, (r) over cap (K2,nS1,n) = (9 + o(1))n and (r) over cap (K-3,K-n,S-1,S-n)= (16 + o(1))n, even this 'simple' case remains open. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条
  • [41] Register Loading via Linear Programming
    Calinescu, Gruia
    Li, Minming
    ALGORITHMICA, 2015, 72 (04) : 1011 - 1032
  • [42] Error correction via linear programming
    Candes, E
    Rudelson, M
    Tao, T
    Vershynin, R
    46TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2005, : 295 - 308
  • [43] Lattice enumeration via linear programming
    Chkifa, Moulay Abdellah
    NUMERISCHE MATHEMATIK, 2024, 156 (01) : 71 - 106
  • [44] Discriminative training via linear programming
    Papineni, KA
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 561 - 564
  • [45] Register Loading via Linear Programming
    Calinescu, Gruia
    Li, Minming
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 171 - +
  • [46] Secretary Problems via Linear Programming
    Buchbinder, Niv
    Jain, Kamal
    Singh, Mohit
    MATHEMATICS OF OPERATIONS RESEARCH, 2014, 39 (01) : 190 - 206
  • [47] Arc Consistency via Linear Programming
    German, Grigori
    Briant, Olivier
    Cambazard, Hadrien
    Jost, Vincent
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING (CP 2017), 2017, 10416 : 114 - 128
  • [48] ASYMPTOTIC-BEHAVIOR OF KARMARKAR METHOD FOR LINEAR-PROGRAMMING
    ASIC, MD
    KOVACEVICVUJCIC, VV
    RADOSAVLJEVICNIKOLIC, MD
    MATHEMATICAL PROGRAMMING, 1990, 46 (02) : 173 - 190
  • [49] ASYMPTOTIC ANALYSIS OF THE EXPONENTIAL PENALTY TRAJECTORY IN LINEAR-PROGRAMMING
    COMINETTI, R
    SANMARTIN, J
    MATHEMATICAL PROGRAMMING, 1994, 67 (02) : 169 - 187
  • [50] ASYMPTOTIC EXPANSION OF PENALTY-GRADIENT FLOWS IN LINEAR PROGRAMMING
    Baillon, J. B.
    Cominetti, R.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) : 728 - 739