Further asymptotic size Ramsey results obtained via linear programming

被引:0
|
作者
Pikhurko, O [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
关键词
size Ramsey number; complete bipartite graphs;
D O I
10.1016/S0012-365X(03)00237-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the author (SIAM J. Discrete Math. 16 (2003) 99-113) has asymptotically computed (via linear programming) size Ramsey numbers involving complete bipartite graphs. Here an attempt is made to extend this method to a larger class of problems by considering the 'simplest' open case when one of the forbidden graphs is S-1,S-n (the n-star K-1,K-n with an added leaf). Although we obtain new non-trivial results such as, for example, (r) over cap (K2,nS1,n) = (9 + o(1))n and (r) over cap (K-3,K-n,S-1,S-n)= (16 + o(1))n, even this 'simple' case remains open. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条
  • [21] Further results on multiparametric quadratic programming
    Tondel, P
    Johansen, TA
    Bemporad, A
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 3173 - 3178
  • [22] Regularized Multiple Criteria Linear Programming via Linear Programming
    Qi, Zhiquan
    Tian, Yingjie
    Shi, Yong
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 1234 - 1239
  • [23] Further results on McMahon's asymptotic approximations
    Elbert, A
    Laforgia, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (36): : 6333 - 6341
  • [24] Approximate dynamic programming via linear programming
    de Farias, DP
    Van Roy, B
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 689 - 695
  • [25] A further study on inverse linear programming problems
    Zhang, JZ
    Liu, ZH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 106 (02) : 345 - 359
  • [26] Asymptotic dynamic programming: Preliminary concepts and results
    Saeks, RE
    Cox, CJ
    Mathia, K
    Maren, AJ
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 2273 - 2278
  • [27] LINEAR-PROGRAMMING AND ECONOMIES OF SIZE
    GIAEVER, H
    SEAGRAVES, J
    JOURNAL OF FARM ECONOMICS, 1960, 42 (01): : 103 - 117
  • [28] A GENERALIZED INVERSE METHOD FOR ASYMPTOTIC LINEAR-PROGRAMMING
    LAMOND, BF
    MATHEMATICAL PROGRAMMING, 1989, 43 (01) : 71 - 86
  • [29] AN EFFICIENT BASIS UPDATE FOR ASYMPTOTIC LINEAR-PROGRAMMING
    LAMOND, BF
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 184 : 83 - 102
  • [30] FURTHER RESULTS ON FUZZY-MATHEMATICAL PROGRAMMING
    FLACHS, J
    POLLATSCHEK, MA
    INFORMATION AND CONTROL, 1978, 38 (03): : 241 - 257