Planar Yang-Mills theory: Hamiltonian, regulators and mass gap

被引:89
|
作者
Karabali, D [1 ]
Kim, CJ
Nair, VP
机构
[1] Rockefeller Univ, Dept Phys, New York, NY 10021 USA
[2] Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
基金
美国国家科学基金会;
关键词
Yang-Mills; glueballs; mass gap;
D O I
10.1016/S0550-3213(98)00309-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We carry out the Hamiltonian analysis of non-Abelian gauge theories in (2 + 1) dimensions in a gauge-invariant matrix parametrization of the fields. A detailed discussion of regularization issues and the construction of the renormalized Laplace operator on the configuration space, which is proportional to the kinetic energy, are given. The origin of the mass gap is analyzed and the lowest eigenstates of the kinetic energy are explicitly obtained; these have zero charge and exhibit a mass gap. The nature of the corrections due to the potential energy, the possibility of an improved perturbation theory and a Schrodinger-like equation for the states are also discussed. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:661 / 694
页数:34
相关论文
共 50 条
  • [21] Planar amplitudes in maximally supersymmetric Yang-Mills theory
    Anastasiou, C
    Dixon, L
    Bern, Z
    Kosower, DA
    PHYSICAL REVIEW LETTERS, 2003, 91 (25) : 251602 - 251602
  • [22] A Conformally Invariant Gap Theorem in Yang-Mills Theory
    Gursky, Matthew
    Kelleher, Casey Lynn
    Streets, Jeffrey
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 361 (03) : 1155 - 1167
  • [23] Perturbation theory in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge
    Campagnari, Davide R.
    Reinhardt, Hugo
    Weber, Axel
    PHYSICAL REVIEW D, 2009, 80 (02):
  • [24] HAMILTONIAN REDUCTIONS OF SELF-DUAL YANG-MILLS THEORY
    HOU, BY
    CHAO, L
    PHYSICS LETTERS B, 1993, 298 (1-2) : 103 - 110
  • [25] Hamiltonian formulations of Yang-Mills theory and gauge ambiguity in quantization
    Bracken, P
    CANADIAN JOURNAL OF PHYSICS, 2003, 81 (03) : 545 - 554
  • [26] Function group approach to unconstrained Hamiltonian Yang-Mills theory
    Salmela, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (10)
  • [27] Hamiltonian Approach to Yang-Mills Theory in Coulomb Gauge - Revisited
    Reinhardt, Hugo
    Campagnari, Davide R.
    Leder, Markus
    Burgio, Giuseppe
    Pawlowski, Jan M.
    Quandt, Markus
    Weber, Axel
    T(R)OPICAL QCD 2010, 2011, 1354
  • [28] Topological Yang-Mills cohomology in pure Yang-Mills theory
    Accardi, A
    Belli, A
    Martellini, M
    Zeni, M
    PHYSICS LETTERS B, 1998, 431 (1-2) : 127 - 134
  • [29] A Hamiltonian analysis of Yang-Mills equations
    Sniatycki, J
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 205 - 214
  • [30] INTEGRABILITY OF THE YANG-MILLS HAMILTONIAN SYSTEM
    KASPERCZUK, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 58 (04): : 387 - 391