Spatial low-discrepancy sequences, spherical cone discrepancy, and applications in financial modeling

被引:8
|
作者
Brauchart, Johann S. [1 ,3 ]
Dick, Josef [1 ]
Fang, Lou [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Graz Univ Technol, Inst Fuer Anal & Computat Number Theory, A-8010 Graz, Austria
基金
澳大利亚研究理事会;
关键词
Option pricing; Quasi-Monte Carlo methods; Reproducing kernel Hilbert space; Sphere; Spherical cone discrepancy; Stolarsky's invariance principle; QUASI-MONTE-CARLO; CUBATURE ERROR;
D O I
10.1016/j.cam.2015.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a reproducing kernel Hilbert space defined on Rd+1 as the tensor product of a reproducing kernel defined on the unit sphere Sd in Rd+1 and a reproducing kernel defined on [0, infinity). We extend Stolarsky's invariance principle to this case and prove upper and lower bounds for numerical integration in the corresponding reproducing kernel Hilbert space. The idea of separating the direction from the distance from the origin can also be applied to the construction of quadrature methods. An extension of the area-preserving Lambert transform is used to generate points on Sd-1 via lifting Sobol' points in [0, 1)(d) to the,sphere. The dth component of each Sobol' point, suitably transformed, provides the 'distance information so that the resulting point set is normally distributed in R-d. Numerical tests provide evidence of the usefulness of constructing Quasi-Monte Carlo type methods for integration in such spaces. We also test this method on examples from financial applications (option pricing problems) and compare the results with traditional methods for numerical integration in R-d. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 53
页数:26
相关论文
共 50 条
  • [31] Low-discrepancy sequences using duality and global function fields
    Niederreiter, Harald
    Ozbudak, Ferruh
    ACTA ARITHMETICA, 2007, 130 (01) : 79 - 97
  • [32] Numerical integration of singular integrands using low-discrepancy sequences
    Bernhard Klinger
    Computing, 1997, 59 : 223 - 236
  • [33] Constructing a new class of low-discrepancy sequences by using the β-adic transformation
    Ninomiya, Syoiti
    1998, Elsevier (47) : 2 - 5
  • [34] Hybrid Differential Evolution using Low-Discrepancy Sequences for Image Segmentation
    Nakib, A.
    Daachi, B.
    Siarry, P.
    2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS & PHD FORUM (IPDPSW), 2012, : 634 - 640
  • [35] Initializing PSO with Probability Distributions and Low-discrepancy Sequences: The Comparative Results
    Thangaraj, Radha
    Pant, Millie
    Deep, Kusum
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1120 - +
  • [36] A CONSTRUCTION OF LOW-DISCREPANCY SEQUENCES USING GLOBAL FUNCTION-FIELDS
    XING, CP
    NIEDERREITER, H
    ACTA ARITHMETICA, 1995, 73 (01) : 87 - 102
  • [37] On the use of low-discrepancy sequences in non-holonomic motion planning
    Sánchez, A
    Zapata, R
    Lanzoni, C
    2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 3764 - 3769
  • [38] ENHANCING ACCURACY OF DEEP LEARNING ALGORITHMS BY TRAINING WITH LOW-DISCREPANCY SEQUENCES
    Mishra, Siddhartha
    Rusch, T. Konstantin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1811 - 1834
  • [39] Interval exchange transformations and low-discrepancy
    Weiss, Christian
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) : 399 - 410
  • [40] Interval exchange transformations and low-discrepancy
    Christian Weiß
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 399 - 410