Spatial low-discrepancy sequences, spherical cone discrepancy, and applications in financial modeling

被引:8
|
作者
Brauchart, Johann S. [1 ,3 ]
Dick, Josef [1 ]
Fang, Lou [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Graz Univ Technol, Inst Fuer Anal & Computat Number Theory, A-8010 Graz, Austria
基金
澳大利亚研究理事会;
关键词
Option pricing; Quasi-Monte Carlo methods; Reproducing kernel Hilbert space; Sphere; Spherical cone discrepancy; Stolarsky's invariance principle; QUASI-MONTE-CARLO; CUBATURE ERROR;
D O I
10.1016/j.cam.2015.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a reproducing kernel Hilbert space defined on Rd+1 as the tensor product of a reproducing kernel defined on the unit sphere Sd in Rd+1 and a reproducing kernel defined on [0, infinity). We extend Stolarsky's invariance principle to this case and prove upper and lower bounds for numerical integration in the corresponding reproducing kernel Hilbert space. The idea of separating the direction from the distance from the origin can also be applied to the construction of quadrature methods. An extension of the area-preserving Lambert transform is used to generate points on Sd-1 via lifting Sobol' points in [0, 1)(d) to the,sphere. The dth component of each Sobol' point, suitably transformed, provides the 'distance information so that the resulting point set is normally distributed in R-d. Numerical tests provide evidence of the usefulness of constructing Quasi-Monte Carlo type methods for integration in such spaces. We also test this method on examples from financial applications (option pricing problems) and compare the results with traditional methods for numerical integration in R-d. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 53
页数:26
相关论文
共 50 条
  • [21] Application of Deterministic Low-Discrepancy Sequences in Global Optimization
    Sergei Kucherenko
    Yury Sytsko
    Computational Optimization and Applications, 2005, 30 : 297 - 318
  • [22] Application of deterministic low-discrepancy sequences in global optimization
    Kucherenko, S
    Sytsko, Y
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 30 (03) : 297 - 318
  • [23] LOW-DISCREPANCY POINT SETS
    NIEDERREITER, H
    MONATSHEFTE FUR MATHEMATIK, 1986, 102 (02): : 155 - 167
  • [24] Application of Low-Discrepancy Sequences for Evaluation of Illumination Optical Systems
    Yoshida, S.
    Horiuchi, S.
    Ushiyama, Z.
    Yoshidome, K.
    Yamada, T.
    Yamamoto, M.
    ILLUMINATION OPTICS II, 2011, 8170
  • [25] Initialising PSO with randomised low-discrepancy sequences: The comparative results
    Uy, Nguyen Quang
    Hoai, Nguyen Xuan
    Mckay, R. I.
    Tuan, Pham Minh
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 1985 - +
  • [26] Numerical integration of singular integrands using low-discrepancy sequences
    Klinger, B
    COMPUTING, 1997, 59 (03) : 223 - 236
  • [27] Deterministic Methods for Stochastic Computing using Low-Discrepancy Sequences
    Najafi, M. Hassan
    Lilja, David J.
    Riedel, Marc
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD) DIGEST OF TECHNICAL PAPERS, 2018,
  • [28] The filtered nearest neighbor method for generating low-discrepancy sequences
    Bennett, MV
    Willemain, TR
    INFORMS JOURNAL ON COMPUTING, 2004, 16 (01) : 68 - 72
  • [29] Differential evolution for the optimization of low-discrepancy generalized Halton sequences
    Kromer, P.
    Platos, J.
    Snasel, V
    SWARM AND EVOLUTIONARY COMPUTATION, 2020, 54
  • [30] Influence of Initializing Krill Herd Algorithm With Low-Discrepancy Sequences
    Agushaka, Ovre Jeffrey
    Ezugwu, Absalom El-Shamir
    IEEE ACCESS, 2020, 8 : 210886 - 210909