Process intensification in gas-liquid mass transfer by nanofluids: Mechanism and current status

被引:24
|
作者
Zhang, Huan [1 ]
Wang, Bing [1 ,2 ]
Xiong, Mingyang [1 ]
Gao, Chunyang [1 ]
Ren, Hongyang [1 ]
Ma, Liang [3 ]
机构
[1] Southwest Petr Univ, Sch Chem & Chem Engn, Chengdu 610500, Sichuan, Peoples R China
[2] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Peoples R China
[3] PetroChina Zhejiang Oilfield Co, Dept Qual Hlth Safety & Environm Protect, Hangzhou 310000, Peoples R China
关键词
Gas-liquid mass transfer; Process intensification; CO2; capture; CO2 ABSORPTION ENHANCEMENT; CHEMICAL COPRECIPITATION METHOD; IRON-OXIDE NANOPARTICLES; CONVECTIVE HEAT-TRANSFER; WATER-BASED NANOFLUIDS; SLURRY BUBBLE-COLUMN; ONE-STEP SYNTHESIS; THERMAL-CONDUCTIVITY; CARBON-DIOXIDE; HYDROGEN-SULFIDE;
D O I
10.1016/j.molliq.2021.118268
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gas-liquid mass transfer is widely used in chemical, pharmaceutical, energy and other fields. Enhancing the gas-liquid mass transfer is helpful to achieve reduction in the various mass transfer equipment size, low emission of harmful gases, energy conservation and environmental protection. Adding solid nanoparticles of the third dispersed phase into the gas-liquid two-phase system is an important method used to enhance gas-liquid mass transfer. Enhancement of mass transfer using nanofluids has received increasing attention in recent years. A comprehensive literature review on gas-liquid mass transfer enhancement by nanofluids is here compiled. The aim of this review is to summarize and compare the development of gas-liquid mass transfer enhancement and the related mechanism. This review emphasize nanofluids preparation methods, nanofluids classification, important influencing factors (gas flow rate, liquid flow rate, gas inlet concentration, solid particles size, solid particles loading and temperature), enhancement mechanism (shuttle effect, hydrodynamic effect and inhibition of bubble coalescence) and further directions. This work also analyses experimental investigations by different authors on gas-liquid mass transfer utilizing nanofluids. Moreover, this review summarize literature on mass transfer in nanofluids stating the conflicting results and possible reasons. The outcomes of this review are expected to inspire new research for future developments and potential application of gas-liquid mass transfer in scientific research and industrial sectors. (C) 2021 Published by Elsevier B.V.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Gas-liquid mass transfer in a rotating liquid redistributor
    Hacking, J. A.
    de Beer, M. M.
    van der Schaaf, J.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2021, 163
  • [32] Interfacial gas-liquid mass transfer modelling
    George, J
    AIR POLLUTION IV: MONITORING, SIMULATION AND CONTROL, 1996, : 287 - 296
  • [33] MASS-TRANSFER IN GAS-LIQUID FLOW
    TISHIN, VB
    LEPILIN, VN
    IBRAGIMOVA, LN
    IVANOVA, TY
    NOVOSELOV, AG
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1982, 55 (04): : 853 - 855
  • [34] The mechanism model of gas-liquid mass transfer enhancement by fine catalyst particles
    Junmei, Zhang
    Chunjian, Xu
    Ming, Zhou
    Chemical Engineering Journal, 2006, 120 (03): : 149 - 156
  • [35] Enhancement effect and mechanism of gas-liquid mass transfer by baffles embedded in the microchannel
    Yin, Yaran
    Zhu, Chunying
    Fu, Taotao
    Ma, Youguang
    Wang, Kai
    Luo, Guangsheng
    CHEMICAL ENGINEERING SCIENCE, 2019, 201 : 264 - 273
  • [36] Mass transfer in gas-liquid flow in microchannels
    Yue, Jun
    Chen, Guangwen
    Yuan, Quan
    Luo, Ling'ai
    le Gall, Hervé
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2006, 57 (06): : 1296 - 1303
  • [37] MASS TRANSFER IN GAS-LIQUID CONTACTING SYSTEMS
    SIDEMAN, S
    HORTACSU, O
    FULTON, JW
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1966, 58 (07): : 32 - &
  • [38] MASS TRANSFER GAS-LIQUID IN COLUMN OF AERATION
    Salla, Marcio Ricardo
    Schulz, Harry Edmar
    ENGENHARIA SANITARIA E AMBIENTAL, 2008, 13 (02) : 189 - 197
  • [39] The mechanism model of gas-liquid mass transfer enhancement by fine catalyst particles
    Zhang Junmei
    Xu Chunjian
    Zhou Ming
    CHEMICAL ENGINEERING JOURNAL, 2006, 120 (03) : 149 - 156
  • [40] CFD modeling of gas-liquid mass transfer process in a rotating packed bed
    Yang, Yucheng
    Xiang, Yang
    Chu, Guangwen
    Zou, Haikui
    Sun, Baochang
    Arowo, Moses
    Chen, Jian-Feng
    CHEMICAL ENGINEERING JOURNAL, 2016, 294 : 111 - 121