Level-set strategy for inverse DSA-lithography

被引:6
|
作者
Ouaknin, Gaddiel Y. [1 ]
Laachi, Nabil [5 ]
Delaney, Kris [5 ]
Fredrickson, Glenn H. [3 ,4 ,5 ]
Gibou, Frederic [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Level-set; SCFT; Inverse problems; DSA; Lithography; Shape optimization; BLOCK-COPOLYMER; IRREGULAR DOMAINS; HOMOPOLYMER; POLYMERS; SIMULATIONS; CURVATURE; ALGORITHM; DIFFUSION; EQUATION;
D O I
10.1016/j.jcp.2018.09.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a level-set strategy to find the geometry of confinement that will guide the self-assembly of block copolymers to a given target design in the context of lithography. The methodology is based on a shape optimization algorithm, where the level-set normal velocity is defined as the pressure field computed through a self-consistent field theory simulation. We present numerical simulations that demonstrate that this methodology is capable of finding guiding templates for a variety of target arrangements of cylinders and thus is an effective approach to the inverse directed self-assembly problem. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1159 / 1178
页数:20
相关论文
共 50 条
  • [21] Level-set methods for convex optimization
    Aleksandr Y. Aravkin
    James V. Burke
    Dmitry Drusvyatskiy
    Michael P. Friedlander
    Scott Roy
    Mathematical Programming, 2019, 174 : 359 - 390
  • [22] Speed Parameters in the Level-Set Segmentation
    Cinque, Luigi
    Cossu, Rossella
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 541 - 553
  • [23] LEVEL-SET METHOD FOR MULTIPHASE FLOWS
    Yap, Y. F.
    Chai, J. C.
    PROCEEDINGS OF CHT-12 - ICHMT INTERNATIONAL SYMPOSIUM ON ADVANCES IN COMPUTATIONAL HEAT TRANSFER, 2012, : 51 - 67
  • [24] A level-set approach to image blending
    Whitaker, RT
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (11) : 1849 - 1861
  • [25] A level-set method for shape optimization
    Allaire, G
    Jouve, F
    Toader, AM
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (12) : 1125 - 1130
  • [26] Probabilistic Forecasting: A Level-Set Approach
    Hasson, Hilaf
    Wang, Yuyang
    Januschowski, Tim
    Gasthaus, Jan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [27] Metamorphosis based on the level-set methods
    Pan, Qing
    Xu, Guo-Liang
    Jisuanji Xuebao/Chinese Journal of Computers, 2009, 32 (02): : 213 - 220
  • [28] A level-set method for flaw visualization
    Westermann, R
    Johnson, C
    Ertl, T
    VISUALIZATION 2000, PROCEEDINGS, 2000, : 147 - 154
  • [29] A continuum level-set model of fracture
    Arvanitakis, Antonios I.
    INTERNATIONAL JOURNAL OF FRACTURE, 2020, 225 (02) : 239 - 249
  • [30] Level-set methods for convex optimization
    Aravkin, Aleksandr Y.
    Burke, James V.
    Drusvyatskiy, Dmitry
    Friedlander, Michael P.
    Roy, Scott
    MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) : 359 - 390