Resolving a Discrepancy in Diffusion Potentials, with a Case Study for Li-Ion Batteries

被引:37
|
作者
Bizeray, Adrien M. [1 ]
Howey, David A. [1 ]
Monroe, Charles W. [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
关键词
LITHIUM-ION; MODEL;
D O I
10.1149/2.0451608jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Overpotentials induced by liquid-phase composition variation can be important when electrochemical devices are operated at high current. The dominant models that describe such 'diffusion potentials' are Nernst-Planck (dilute-solution) theory and Onsager-Stefan-Maxwell (concentrated-solution) theory. Nernst-Planck flux laws emerge from Onsager-Stefan-Maxwell laws in the limit of high electrolyte dilution, and the material properties involved come into agreement. The two models yield different expressions for diffusion potentials in the dilute limit, however, because of a disparity in how electric potential is defined. As applied to lithium-ion batteries, concentrated-solution theory employs a voltage measured by a reference electrode reversible to lithium cations; this provides an unambiguous connection to a measurement process, albeit hypothetical on a local scale. After the Nernst-Planck voltage is related to such a properly referenced voltage, the discrepancy in diffusion potentials vanishes. The impact of using Nernst-Planck voltages instead of measurable voltages is illustrated by simulations of a lithium-ion battery. Terminal-to-terminal voltage is relatively unaffected, but the thermal response and internal states change significantly. (C) The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.
引用
收藏
页码:E223 / E229
页数:7
相关论文
共 50 条
  • [31] LI-ION BATTERIES ARE GETTING A MAKEOVER
    不详
    CHEMICAL ENGINEERING PROGRESS, 2011, 107 (10) : 4 - 5
  • [32] Sulfides for Li-ion batteries and beyond
    Wang, Chunsheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [33] Li-ion batteries: Phase transition
    侯配玉
    褚赓
    高健
    张彦涛
    张联齐
    Chinese Physics B, 2016, (01) : 20 - 30
  • [34] Capacity Estimation for Li-ion Batteries
    Tang, Xidong
    Mao, Xiaofeng
    Lin, Jian
    Koch, Brian
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 947 - 952
  • [35] Li-ion Batteries and the Electrification of the Fleet
    Camp, Daniel V.
    Vey, Nathan L.
    Kylander, Paul W.
    Auld, Sean G.
    Willis, Jerald J.
    Lussier, Jonathan F.
    Eldred, Ross A.
    Van Bossuyt, Douglas L.
    NAVAL ENGINEERS JOURNAL, 2023, 135 (01) : 169 - 184
  • [36] Computational understanding of Li-ion batteries
    Alexander Urban
    Dong-Hwa Seo
    Gerbrand Ceder
    npj Computational Materials, 2
  • [37] Electrochemical Oscillation in Li-Ion Batteries
    Li, De
    Sun, Yang
    Yang, Zhenzhong
    Gu, Lin
    Chen, Yong
    Zhou, Haoshen
    JOULE, 2018, 2 (07) : 1265 - 1277
  • [38] ACIDIC LEACHING OF Li-ION BATTERIES
    Silva, Rafael Gundim
    Afonso, Julio Carlos
    Mahler, Claudio Fernando
    QUIMICA NOVA, 2018, 41 (05): : 581 - 586
  • [39] Diagnosis and restoration of Li-Ion batteries
    Kirpichnikova, I. M.
    Korobatov, D. V.
    Martyanov, A. S.
    Sirotkin, E. A.
    Solomin, E. V.
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGIES IN BUSINESS AND INDUSTRY 2016, 2017, 803
  • [40] Nickel Misbehaves in Li-Ion Batteries
    不详
    CHEMICAL ENGINEERING PROGRESS, 2012, 108 (11) : 10 - 10