Theoretical Design of Optimal Molecular Qudits for Quantum Error Correction

被引:20
|
作者
Chiesa, A. [2 ,3 ]
Petiziol, F. [1 ]
Chizzini, M. [2 ]
Santini, P. [2 ,4 ]
Carretta, S. [2 ,3 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[2] Univ Parma, Dipartimento Sci Matemat Fis & Informat, I-43124 Parma, Italy
[3] INFN, Grp Collegato Parma, Sez Milano Bicocca, I-43124 Parma, Italy
[4] INSTM, UdR Parma, I-43124 Parma, Italy
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2022年 / 13卷 / 28期
基金
欧盟地平线“2020”;
关键词
METAL; COHERENCE; RING;
D O I
10.1021/acs.jpclett.2c01602
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We pinpoint the key ingredients ruling decoherence in multispin clusters, and we engineer the system Hamiltonian to design optimal molecules embedding quantum error correction. These are antiferromagnetically coupled systems with competing exchange interactions, characterized by many low-energy states in which decoherence is dramatically suppressed and does not increase with the system size. This feature allows us to derive optimized code words, enhancing the power of the quantum error correction code by orders of magnitude. We demonstrate this by a complete simulation of the system dynamics, including the effect of decoherence driven by a nuclear spin bath and the full sequence of pulses to implement error correction and logical gates between protected states.
引用
收藏
页码:6468 / 6474
页数:7
相关论文
共 50 条
  • [41] Perturbative Quantum Error Correction
    Beny, Cedric
    PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [42] On the Probabilistic Quantum Error Correction
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4620 - 4640
  • [43] Decoherence and quantum error correction
    Knight, PL
    Plenio, MB
    Vedral, V
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2381 - 2385
  • [44] Quantum memories and error correction
    Wootton, James R.
    JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1717 - 1738
  • [45] Entanglement and quantum error correction
    Hiroshima, Tohya
    Hayashi, Masahito
    QUANTUM COMPUTATION AND INFORMATION: FROM THEORY TO EXPERIMENT, 2006, 102 : 111 - +
  • [46] Quantum error correction for beginners
    Devitt, Simon J.
    Munro, William J.
    Nemoto, Kae
    REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (07)
  • [47] Quantum Error Correction for Metrology
    Kessler, E. M.
    Lovchinsky, I.
    Sushkov, A. O.
    Lukin, M. D.
    PHYSICAL REVIEW LETTERS, 2014, 112 (15)
  • [48] Introduction to quantum error correction
    Steane, AM
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1739 - 1757
  • [49] Experimental quantum error correction
    Cory, DG
    Price, MD
    Maas, W
    Knill, E
    Laflamme, R
    Zurek, WH
    Havel, TF
    Somaroo, SS
    PHYSICAL REVIEW LETTERS, 1998, 81 (10) : 2152 - 2155
  • [50] Approximate Quantum Error Correction
    Schumacher, Benjamin
    Westmoreland, Michael D.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 5 - 12