Theoretical Design of Optimal Molecular Qudits for Quantum Error Correction

被引:20
|
作者
Chiesa, A. [2 ,3 ]
Petiziol, F. [1 ]
Chizzini, M. [2 ]
Santini, P. [2 ,4 ]
Carretta, S. [2 ,3 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[2] Univ Parma, Dipartimento Sci Matemat Fis & Informat, I-43124 Parma, Italy
[3] INFN, Grp Collegato Parma, Sez Milano Bicocca, I-43124 Parma, Italy
[4] INSTM, UdR Parma, I-43124 Parma, Italy
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2022年 / 13卷 / 28期
基金
欧盟地平线“2020”;
关键词
METAL; COHERENCE; RING;
D O I
10.1021/acs.jpclett.2c01602
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We pinpoint the key ingredients ruling decoherence in multispin clusters, and we engineer the system Hamiltonian to design optimal molecules embedding quantum error correction. These are antiferromagnetically coupled systems with competing exchange interactions, characterized by many low-energy states in which decoherence is dramatically suppressed and does not increase with the system size. This feature allows us to derive optimized code words, enhancing the power of the quantum error correction code by orders of magnitude. We demonstrate this by a complete simulation of the system dynamics, including the effect of decoherence driven by a nuclear spin bath and the full sequence of pulses to implement error correction and logical gates between protected states.
引用
收藏
页码:6468 / 6474
页数:7
相关论文
共 50 条
  • [21] Optimal universal quantum error correction via bounded reference frames
    Yang, Yuxiang
    Mo, Yin
    Renes, Joseph M.
    Chiribella, Giulio
    Woods, Mischa P.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [22] Accurate optimal quantum error correction thresholds from coherent information
    Colmenarez, Luis
    Huang, Ze-Min
    Diehl, Sebastian
    Mueller, Markus
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [23] OPTIMAL QUANTUM ERROR CORRECTION FROM HAMILTONIAN MODELS OR PROCESS TOMOGRAPHY
    Kosut, Robert L.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2011, 11 (03) : 269 - 280
  • [24] Design of nanophotonic circuits for autonomous subsystem quantum error correction
    Kerckhoff, J.
    Pavlichin, D. S.
    Chalabi, H.
    Mabuchi, H.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [25] Quantum interleaver: Quantum error correction for burst error
    Kawabata, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3540 - 3543
  • [26] Quantum Error Correction with Quantum Autoencoders
    Locher, David F.
    Cardarelli, Lorenzo
    Mueller, Markus
    QUANTUM, 2023, 7
  • [27] Quantum error correction for quantum memories
    Terhal, Barbara M.
    REVIEWS OF MODERN PHYSICS, 2015, 87 (02) : 307 - 346
  • [28] Quantum error correction and quantum computation
    Alber, G
    Delgado, A
    Mussinger, M
    LASER PHYSICS, 2002, 12 (04) : 742 - 750
  • [29] Error-corrected quantum repeaters with Gottesman-Kitaev-Preskill qudits
    Schmidt, Frank
    Miller, Daniel
    van Loock, Peter
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [30] Structured near-optimal channel-adapted quantum error correction
    Fletcher, Andrew S.
    Shor, Peter W.
    Win, Moe Z.
    PHYSICAL REVIEW A, 2008, 77 (01)