Integration of Multi-modal Cues in Synthetic Attention Processes to Drive Virtual Agent Behavior

被引:0
|
作者
Seele, Sven [1 ]
Haubrich, Tobias [1 ]
Metzler, Tim [1 ]
Schild, Jonas [1 ,2 ]
Herpers, Rainer [1 ,3 ,4 ]
Grzegorzek, Marcin [5 ]
机构
[1] Bonn Rhein Sieg Univ Appl Sci, Inst Visual Comp, Grantham Allee 20, D-53757 St Augustin, Germany
[2] Univ Appl Sci & Arts, Hsch Hannover, Hannover, Germany
[3] Univ New Brunswick, Fredericton, NB, Canada
[4] York Univ, Toronto, ON, Canada
[5] Univ Siegen, Res Grp Pattern Recognit, Siegen, Germany
来源
INTELLIGENT VIRTUAL AGENTS, IVA 2017 | 2017年 / 10498卷
关键词
intelligent virtual agents; synthetic perception; virtual attention; VISION; MEMORY;
D O I
10.1007/978-3-319-67401-8_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simulations and serious games require realistic behavior of multiple intelligent agents in real-time. One particular issue is how attention and multi-modal sensory memory can be modeled in a natural but effective way, such that agents controllably react to salient objects or are distracted by other multi-modal cues from their current intention. We propose a conceptual framework that provides a solution with adherence to three main design goals: natural behavior, real-time performance, and controllability. As a proof of concept, we implement three major components and showcase effectiveness in a real-time game engine scenario. Within the exemplified scenario, a visual sensor is combined with static saliency probes and auditory cues. The attention model weighs bottom-up attention against intention-related top-down processing, controllable by a designer using memory and attention inhibitor parameters. We demonstrate our case and discuss future extensions.
引用
收藏
页码:403 / 412
页数:10
相关论文
共 50 条
  • [21] Multi-modal event streams for virtual reality
    von Spiczak, J.
    Samset, E.
    DiMaio, S.
    Reitmayr, G.
    Schmalstieg, D.
    Burghart, C.
    Kikinis, R.
    MULTIMEDIA COMPUTING AND NETWORKING 2007, 2007, 6504
  • [22] Multi-Modal Fused-Attention Network for Depression Level Recognition Based on Enhanced Audiovisual Cues
    Zhou, Yihan
    Yu, Xiaokang
    Huang, Zixi
    Palati, Feierdun
    Zhao, Zeyu
    He, Zihan
    Feng, Yuan
    Luo, Yuxi
    IEEE ACCESS, 2025, 13 : 37913 - 37923
  • [23] Integration of transgender health: A multi-modal approach
    Paradiso, Catherine
    Arca-Contreras, Karen
    Brillhart, Susan J.
    Macchiarola, Jennifer
    Curcio, Danna L.
    TEACHING AND LEARNING IN NURSING, 2022, 17 (04) : 425 - 432
  • [24] Special Issue on Multi-modal Integration and Development
    Rao, A. Ravishankar
    Choe, Yoonsuck
    Chakravarthy, Srinivasa
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2016, 8 (04) : 312 - 312
  • [25] Multi-modal Information Integration for Document Retrieval
    Hassan, Ehtesham
    Chaudhury, Santanu
    Gopal, M.
    2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2013, : 1200 - 1204
  • [26] A control architecture for multi-modal sensory integration
    Goncalves, LMG
    Grupen, RA
    Oliveira, AAF
    SIBGRAPI '98 - INTERNATIONAL SYMPOSIUM ON COMPUTER GRAPHICS, IMAGE PROCESSING, AND VISION, PROCEEDINGS, 1998, : 418 - 425
  • [27] Multi-modal Feature Integration for Secure Authentication
    Kang, Hang-Bong
    Ju, Myung-Ho
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 1191 - 1200
  • [28] Contextual Inter-modal Attention for Multi-modal Sentiment Analysis
    Ghosal, Deepanway
    Akhtar, Md Shad
    Chauhan, Dushyant
    Poria, Soujanya
    Ekbalt, Asif
    Bhattacharyyat, Pushpak
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3454 - 3466
  • [29] Mixture of Attention Variants for Modal Fusion in Multi-Modal Sentiment Analysis
    He, Chao
    Zhang, Xinghua
    Song, Dongqing
    Shen, Yingshan
    Mao, Chengjie
    Wen, Huosheng
    Zhu, Dingju
    Cai, Lihua
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (02)
  • [30] Dig into Multi-modal Cues for Video Retrieval with Hierarchical Alignment
    Wang, Wenzhe
    Zhang, Mengdan
    Chen, Runnan
    Cai, Guanyu
    Zhou, Penghao
    Peng, Pai
    Guo, Xiaowei
    Wu, Jian
    Sun, Xing
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1113 - 1121