Pattern generation, topology, and non-holonomic systems

被引:0
|
作者
Mansouri, AR [1 ]
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
non-holonomic systems; simple connectedness; pattern generation;
D O I
10.1016/j.sysconle.2005.02.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of achieving a desired steady-state effect through periodic behavior for a class of control systems with and without drift. The problem of using periodic behavior to achieve set-point regulation for the control systems with drift is directly related to that of achieving unbounded effect for the corresponding driftless control systems. We prove that in both cases, the ability to use periodic behavior, and more generally, bounded behavior, to achieve the desired goal implies, under a certain topological condition, the non-holonomicity of the control systems. We also prove that under a regularity condition, the resulting system trajectories must be area-generating in a precise sense. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:953 / 959
页数:7
相关论文
共 50 条
  • [31] Towards consensus in networked non-holonomic systems
    Zhai, G.
    Takeda, J.
    Imae, J.
    Kobayashi, T.
    IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (10): : 2212 - 2218
  • [32] Dynamics of non-holonomic systems with stochastic transport
    Holm, D. D.
    Putkaradze, V.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2209):
  • [33] Singularities of holonomic and non-holonomic robotic systems: A normal form approach
    Tchon, Krzysztof
    Ratajczak, Joanna
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (15): : 7698 - 7713
  • [34] On the variational formulation of systems with non-holonomic constraints
    Delphenich, D. H.
    ANNALEN DER PHYSIK, 2009, 18 (09) : 649 - 670
  • [35] The planning of optimal motions of non-holonomic systems
    Mirosław Galicki
    Nonlinear Dynamics, 2017, 90 : 2163 - 2184
  • [36] Regularity aspects and Hamiltonization of non-holonomic systems
    Saunders, DJ
    Cantrijn, F
    Sarlet, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (39): : 6869 - 6890
  • [37] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [38] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [39] The Non-holonomic Double Pendulum: an Example of Non-linear Non-holonomic System
    Benenti, Sergio
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 417 - 442
  • [40] On non-holonomic connexions
    Schouten, JA
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (1/5): : 291 - 299