Pattern generation, topology, and non-holonomic systems

被引:0
|
作者
Mansouri, AR [1 ]
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
non-holonomic systems; simple connectedness; pattern generation;
D O I
10.1016/j.sysconle.2005.02.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of achieving a desired steady-state effect through periodic behavior for a class of control systems with and without drift. The problem of using periodic behavior to achieve set-point regulation for the control systems with drift is directly related to that of achieving unbounded effect for the corresponding driftless control systems. We prove that in both cases, the ability to use periodic behavior, and more generally, bounded behavior, to achieve the desired goal implies, under a certain topological condition, the non-holonomicity of the control systems. We also prove that under a regularity condition, the resulting system trajectories must be area-generating in a precise sense. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:953 / 959
页数:7
相关论文
共 50 条
  • [21] First integrals of non-holonomic systems and their generators
    Giachetta, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (30): : 5369 - 5389
  • [22] Non-holonomic Lagrangian systems in jet manifolds
    deLeon, M
    Marrero, JC
    deDiego, DM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04): : 1167 - 1190
  • [23] Unified symmetry of non-holonomic singular systems
    Yuan-Cheng, Li
    Jing, Wang
    Li-Li, Xia
    Qi-Bao, Hou
    Hong-Xing, Jing
    CHINESE PHYSICS, 2007, 16 (10): : 2841 - 2844
  • [24] Learning optimal trajectories for non-holonomic systems
    Oriolo, G
    Panzieri, S
    Ulivi, G
    INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (10) : 980 - 991
  • [25] A Lie algebroid framework for non-holonomic systems
    Mestdag, T
    Langerock, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05): : 1097 - 1111
  • [26] The planning of optimal motions of non-holonomic systems
    Galicki, Miroslaw
    NONLINEAR DYNAMICS, 2017, 90 (03) : 2163 - 2184
  • [27] ON THE LAGRANGE AND JACOBI PRINCIPLES FOR NON-HOLONOMIC SYSTEMS
    RUMIANTSEV, VV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1979, 43 (04): : 625 - 632
  • [28] On the elastic stability of static non-holonomic systems
    Godoy, LA
    Mirasso, AE
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (13-14) : 3439 - 3462
  • [29] The equations of movement of non-holonomic conservative systems
    Bilimovitch, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1913, 156 : 381 - 384
  • [30] Non-holonomic Lagrangian systems in jet manifolds
    Journal of Physics A: Mathematical and General, 30 (04):