Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells

被引:115
|
作者
Lundberg, O
Lu, J
Rockett, A
Edoff, M
Stolt, L
机构
[1] Uppsala Univ, Angstrom Solar Ctr, SE-75121 Uppsala, Sweden
[2] Univ Illinois, Urbana, IL 61801 USA
关键词
diffusion;
D O I
10.1016/S0022-3697(03)00127-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The diffusion of indium and gallium in polycrystalline thin film Cu(In,Ga)Se-2 layers has been investigated. Bilayer structures of CuInSe2 on top of CuGaSe2 and vice versa have been fabricated in both a Cu-rich and Cu-poor process (in relation to the ideal stoichiometry). In each process molybdenum coated soda-lime glass with and without a sodium barrier was used. These bilayers were analyzed with secondary ion mass spectrometry, X-ray diffraction, scanning electron microscope and transmission electron microscope equipped with energy dispersive X-ray spectroscopy. It was found that the grain boundary diffusion was not significantly higher than the diffusion inside the grains, also for Cu-rich layers. The diffusion is suggested to mainly proceed via vacant metal sites in the lattice structure. In sodium free films a higher diffusion into the bottom layers, compared to films with sodium, was seen in all cases. This observation was explained with a larger number of vacancies, that facilitates indium and gallium diffusion, in the sodium free films. The difference in diffusion between indium in CGS layers and gallium in CIS layers, in both Cu-rich and Cu-poor processes, was small for layers with sodium. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1499 / 1504
页数:6
相关论文
共 50 条
  • [31] Nanoparticle derived Cu(In, Ga)Se2 absorber layer for thin film solar cells
    Ahn, SeJin
    Kim, KiHyun
    Yoon, KyungHoon
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 313 : 171 - 174
  • [32] Flexible Cu(In,Ga)Se2 thin-film solar cells for space application
    Otte, Karsten
    Makhova, Liudmila
    Braun, Alexander
    Konovalov, Igor
    THIN SOLID FILMS, 2006, 511 : 613 - 622
  • [33] Optical modeling and simulation of thin-film Cu(In,Ga)Se2 solar cells
    Krc, J.
    Campa, A.
    Cernivec, G.
    Malmstrom, J.
    Edoff, M.
    Smole, F.
    Topic, M.
    NUSOD '06: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES, 2006, : 33 - +
  • [34] The effect of high growth temperature on Cu(In,Ga)Se2 thin film solar cells
    Salome, P. M. P.
    Hultqvist, A.
    Fjallstrom, V.
    Vermang, B.
    Edoff, M.
    Aitken, B.
    Zhang, K.
    Fuller, K.
    Williams, C. Kosik
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 123 : 166 - 170
  • [35] Hybrid sputtering/evaporation deposition of Cu(In, Ga) Se2 thin film solar cells
    Acciarri, M.
    Le Donne, A.
    Morgano, M.
    Caccamo, L.
    Miglio, L.
    Marchionna, S.
    Moneta, R.
    Meschia, M.
    Binetti, S.
    EUROPEAN MATERIALS RESEARCH SOCIETY CONFERENCE SYMPOSIUM: ADVANCED INORGANIC MATERIALS AND CONCEPTS FOR PHOTOVOLTAICS, 2011, 10
  • [36] Role of planar defects in Cu(In,Ga)Se2 thin-film solar cells
    Cojocaru-Miredin, Oana
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 2623 - 2626
  • [37] Optical and recombination losses in thin-film Cu(In,Ga)Se2 solar cells
    Kosyachenko, L. A.
    Mathew, X.
    Paulson, P. D.
    Lytvynenko, V. Ya.
    Maslyanchuk, O. L.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 130 : 291 - 302
  • [38] Efficiency limitations of polycrystalline thin film solar cells:: case of Cu(In,Ga)Se2
    Werner, JH
    Mattheis, J
    Rau, U
    THIN SOLID FILMS, 2005, 480 : 399 - 409
  • [39] Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells
    Orgassa, K
    Schock, HW
    Werner, JH
    THIN SOLID FILMS, 2003, 431 : 387 - 391
  • [40] Pressure dependence of photovoltaic parameters in thin film Cu(In,Ga)Se2 solar cells
    Shvydka, Diana
    Drayton, J.
    Mitra, M.
    Marsillac, S. X.
    Jacob, F.
    CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS 1 AND 2, 2006, : 465 - 467