Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells

被引:115
|
作者
Lundberg, O
Lu, J
Rockett, A
Edoff, M
Stolt, L
机构
[1] Uppsala Univ, Angstrom Solar Ctr, SE-75121 Uppsala, Sweden
[2] Univ Illinois, Urbana, IL 61801 USA
关键词
diffusion;
D O I
10.1016/S0022-3697(03)00127-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The diffusion of indium and gallium in polycrystalline thin film Cu(In,Ga)Se-2 layers has been investigated. Bilayer structures of CuInSe2 on top of CuGaSe2 and vice versa have been fabricated in both a Cu-rich and Cu-poor process (in relation to the ideal stoichiometry). In each process molybdenum coated soda-lime glass with and without a sodium barrier was used. These bilayers were analyzed with secondary ion mass spectrometry, X-ray diffraction, scanning electron microscope and transmission electron microscope equipped with energy dispersive X-ray spectroscopy. It was found that the grain boundary diffusion was not significantly higher than the diffusion inside the grains, also for Cu-rich layers. The diffusion is suggested to mainly proceed via vacant metal sites in the lattice structure. In sodium free films a higher diffusion into the bottom layers, compared to films with sodium, was seen in all cases. This observation was explained with a larger number of vacancies, that facilitates indium and gallium diffusion, in the sodium free films. The difference in diffusion between indium in CGS layers and gallium in CIS layers, in both Cu-rich and Cu-poor processes, was small for layers with sodium. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1499 / 1504
页数:6
相关论文
共 50 条
  • [21] Cu(In,Ga)Se2 thin-film solar cells grown with cracked selenium
    Kawamura, Masahiro
    Fujita, Toshiyuki
    Yamada, Akira
    Konagai, Makoto
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (03) : 753 - 756
  • [22] The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading
    Kim, Young-Ill
    Yang, Kee-Jeong
    Kim, Se-Yun
    Kang, Jin-Kyu
    Kim, Juran
    Jo, William
    Yoo, Hyesun
    Kim, JunHo
    Kim, Dae-Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 76 : 437 - 442
  • [23] Effect of annealing on CdS/Cu(In,Ga)Se2 thin-film solar cells
    Chung, Yong-Duck
    Cho, Dae-Hyung
    Park, Nae-Man
    Lee, Kyu-Seok
    Kim, Jeha
    CURRENT APPLIED PHYSICS, 2011, 11 (01) : S65 - S67
  • [24] Fabrication methods for performance improvement of Cu(In, Ga) Se2 thin film solar cells
    Choi, P. H.
    Baek, D. H.
    Kim, H. J.
    Kim, K. S.
    Park, H. S.
    Kim, S. S.
    Choi, B. D.
    ELECTRONICS LETTERS, 2013, 49 (24) : 1561 - +
  • [25] Effects of the incorporation of alkali elements on Cu(In,Ga)Se2 thin film solar cells
    Shin, Donghyeop
    Kim, Jekyung
    Gershon, Talia
    Mankad, Ravin
    Hopstaken, Marinus
    Guha, Supratik
    Ahn, Byung Tae
    Shin, Byungha
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 : 695 - 702
  • [26] Photosensitivity of thin-film ZnO/CdS/Cu(In, Ga)Se2 solar cells
    T. Walter
    V. Yu. Rud’
    Yu. V. Rud’
    H. W. Schock
    Semiconductors, 1997, 31 : 681 - 685
  • [27] Quantitative luminescence mapping of Cu(In, Ga)Se2 thin-film solar cells
    Delamarre, Amaury
    Paire, Myriam
    Guillemoles, Jean-Francois
    Lombez, Laurent
    PROGRESS IN PHOTOVOLTAICS, 2015, 23 (10): : 1305 - 1312
  • [28] Cu(In,Ga)Se2 thin film solar cells with buffer layer alternative to CdS
    Bhattacharya, RN
    Ramanathan, K
    SOLAR ENERGY, 2004, 77 (06) : 679 - 683
  • [29] Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se2 Thin Film Solar Cells
    Aboulfadl, Hisham
    Keller, Jan
    Larsen, Jes
    Thuvander, Mattias
    Riekehr, Lars
    Edoff, Marika
    Platzer-Bjorkman, Charlotte
    MICROSCOPY AND MICROANALYSIS, 2019, 25 (02) : 532 - 538
  • [30] Equivalent Circuit For AC Response of Cu(In,Ga)Se2 Thin Film Solar Cells
    Cunha, J. M. V.
    Rocha, C.
    Vinhais, C.
    Fernandes, P. A.
    Salome, P. M. P.
    2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2019, : 923 - 927