Metal-Organic Frameworks on Palladium Nanoparticle- Functionalized Carbon Nanotubes for Monitoring Hydrogen Storage

被引:8
|
作者
Hwang, Sean I. [1 ]
Sopher, Emmy M. [1 ]
Zeng, Zidao [1 ]
Schulte, Zachary M. [1 ]
White, David L. [1 ]
Rosi, Nathaniel L. [1 ,2 ]
Star, Alexander [1 ,3 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[3] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
metal organic framework; single-walled carbon nanotubes; sensors; hydrogen storage; HKUST-1; palladium nanoparticles; chemiresistor; GAS-ADSORPTION; SENSORS; SENSITIVITY; MECHANISMS; GROWTH; ZIF-8;
D O I
10.1021/acsanm.2c00998
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Palladium is a well-known hydrogen-absorbing material. When palladium is functionalized with copper(II) benzene-1,3,5tricarboxylate (HKUST-1), a hydrogen-adsorbing metal-organic framework, its hydrogen-absorption capacity can be increased. In this work, we show that, by growing the HKUST-1 on palladium nanoparticle-functionalized single-walled carbon nanotubes (Pd NP/ SWCNT), we can dynamically monitor the adsorption and desorption of hydrogen from the HKUST-1 and Pd NP composite by using the carbon nanotubes as transducers in chemiresistors. Addition of HKUST-1 to the Pd NP/SWCNT was shown to increase the sensitivity of the nanocomposite material to hydrogen by 300% and limit of detection to hydrogen by 33%. The increase in sensitivity was attributed to the increased hydrogen sorption capacity of the combined HKUST-1/Pd NP. A factor of 8 improvement in sensitivity was further achieved by using semiconductorenriched SWCNT instead of mixed metallic/semiconducting nanotubes and a corresponding improvement in the theoretical limit of detection down to 70 ppb.
引用
收藏
页码:13779 / 13786
页数:8
相关论文
共 50 条
  • [31] Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover
    Li, Yingwei
    Yang, Ralph T.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (25) : 8136 - 8137
  • [32] Tuning metal-organic frameworks for hydrogen storage applications
    Froeba, Michael
    Wenzel, Stephanie Eva
    Frahm, Daniela
    Fischer, Michael
    Hoffmann, Frank
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [33] Metal-organic frameworks—New materials for hydrogen storage
    V. I. Isaeva
    L. M. Kustov
    Russian Journal of General Chemistry, 2007, 77 : 721 - 739
  • [34] Hydrogen storage mechanism and diffusion in metal-organic frameworks
    Koizumi, Kenichi
    Nobusada, Katsuyuki
    Boero, Mauro
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (15) : 7756 - 7764
  • [35] Volumetric Hydrogen Storage Capacity in Metal-Organic Frameworks
    Balderas-Xicohtencatl, R.
    Schlichtenmayer, Maurice
    Hirscher, Michael
    ENERGY TECHNOLOGY, 2018, 6 (03) : 578 - 582
  • [36] Is catenation beneficial for hydrogen storage in metal-organic frameworks?
    Ryan, Patrick
    Broadbelt, Linda J.
    Snurr, Randall Q.
    CHEMICAL COMMUNICATIONS, 2008, (35) : 4132 - 4134
  • [37] Metal-Organic Frameworks (MOFs) as Hydrogen Storage Materials
    Jia Chao
    Yuan Xianxia
    Ma Zifeng
    PROGRESS IN CHEMISTRY, 2009, 21 (09) : 1954 - 1962
  • [38] Metal-organic Frameworks for Hydrogen Storage: Theoretical Prospective
    Heikal, Lobna A.
    Hassan, Walid M., I
    Hamouda, Asmaa S.
    Mohamed, Hamdy F. M.
    El-shazly, Ahmed H.
    Ibrahim, Medhat A.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2021, 64 (03): : 1133 - 1140
  • [39] Metal-organic frameworks - New materials for hydrogen storage
    Isaeva, V. I.
    Kustov, L. M.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2007, 77 (04) : 721 - 739
  • [40] Highly interpenetrated metal-organic frameworks for hydrogen storage
    Kesanli, B
    Cui, Y
    Smith, MR
    Bittner, EW
    Bockrath, BC
    Lin, WB
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (01) : 72 - 75