Metal-Organic Frameworks on Palladium Nanoparticle- Functionalized Carbon Nanotubes for Monitoring Hydrogen Storage

被引:8
|
作者
Hwang, Sean I. [1 ]
Sopher, Emmy M. [1 ]
Zeng, Zidao [1 ]
Schulte, Zachary M. [1 ]
White, David L. [1 ]
Rosi, Nathaniel L. [1 ,2 ]
Star, Alexander [1 ,3 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[3] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
metal organic framework; single-walled carbon nanotubes; sensors; hydrogen storage; HKUST-1; palladium nanoparticles; chemiresistor; GAS-ADSORPTION; SENSORS; SENSITIVITY; MECHANISMS; GROWTH; ZIF-8;
D O I
10.1021/acsanm.2c00998
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Palladium is a well-known hydrogen-absorbing material. When palladium is functionalized with copper(II) benzene-1,3,5tricarboxylate (HKUST-1), a hydrogen-adsorbing metal-organic framework, its hydrogen-absorption capacity can be increased. In this work, we show that, by growing the HKUST-1 on palladium nanoparticle-functionalized single-walled carbon nanotubes (Pd NP/ SWCNT), we can dynamically monitor the adsorption and desorption of hydrogen from the HKUST-1 and Pd NP composite by using the carbon nanotubes as transducers in chemiresistors. Addition of HKUST-1 to the Pd NP/SWCNT was shown to increase the sensitivity of the nanocomposite material to hydrogen by 300% and limit of detection to hydrogen by 33%. The increase in sensitivity was attributed to the increased hydrogen sorption capacity of the combined HKUST-1/Pd NP. A factor of 8 improvement in sensitivity was further achieved by using semiconductorenriched SWCNT instead of mixed metallic/semiconducting nanotubes and a corresponding improvement in the theoretical limit of detection down to 70 ppb.
引用
收藏
页码:13779 / 13786
页数:8
相关论文
共 50 条
  • [21] Microporous metal-organic frameworks for hydrogen storage
    Sumida, Kenji
    Long, Jeffrey R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [22] Porous metal-organic frameworks for hydrogen storage
    Zhao, Dian
    Wang, Xinxin
    Yue, Lianglan
    He, Yabing
    Chen, Banglin
    CHEMICAL COMMUNICATIONS, 2022, 58 (79) : 11059 - 11078
  • [23] Strategies for hydrogen storage in metal-organic frameworks
    Rowsell, JLC
    Yaghi, OM
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (30) : 4670 - 4679
  • [24] Review: Hydrogen storage in metal-organic frameworks
    不详
    CHEMSUSCHEM, 2010, 3 (06) : 651 - 651
  • [25] Hydrogen Storage in Metal-Organic Frameworks: A Review
    Langmi, Henrietta W.
    Ren, Jianwei
    North, Brian
    Mathe, Mkhulu
    Bessarabov, Dmitri
    ELECTROCHIMICA ACTA, 2014, 128 : 368 - 392
  • [26] Porous metal-organic frameworks for hydrogen storage
    Liu, Yangyang
    Farias, Phillip
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [27] Hydrogen storage in metal-organic frameworks.
    Rowsell, JLC
    Millward, AR
    Mueller, U
    Yaghi, OM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U1427 - U1427
  • [28] Hydrogen Storage in New Metal-Organic Frameworks
    Tranchemontagne, David J.
    Park, Kyo Sung
    Furukawa, Hiroyasu
    Eckert, Juergen
    Knobler, Carolyn B.
    Yaghi, Omar M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (24): : 13143 - 13151
  • [29] Synthesis and Hydrogen Storage Properties of Palladium Nanoparticle–Organic Frameworks
    Yuki Yamamoto
    Mariko Miyachi
    Yoshinori Yamanoi
    Ai Minoda
    Shunsuke Maekawa
    Shinji Oshima
    Yoshihiro Kobori
    Hiroshi Nishihara
    Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24 : 208 - 213
  • [30] Design strategies for metal alkoxide functionalized metal-organic frameworks for ambient temperature hydrogen storage
    Brand, Stephen K.
    Colon, Yamil J.
    Getman, Rachel B.
    Snurr, Randall Q.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 171 : 103 - 109